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ABSTRACT. Continuous monitoring of soil 
salinity/sodicity is essential in environments such as the B-
XII irrigation district (SW Spain) where a shallow saline 
water table and intensive irrigated agriculture create a 
fragile equilibrium between salt accumulation and leaching 
in the topsoil. We evaluate to which extend 
electromagnetic induction (EMI) sensing and inversion 
with limited calibration can be used to accomplish such 
monitoring purposes.  
EMI surveys were performed in 2017 and 2020 in a field 
with a heavy clay soil. Soil samples were taken at different 
locations and depths along a transect and analyzed for 
salinity/sodicity-related parameters. Inversion of the EMI 
signals along the transect yielded consistent conductivity 
images for both years and showed a good relation 
(R2=0.80) with these parameters.  
Our results show that inversion of EMI signals offers a 
powerful means for monitoring spatial and temporal 
changing soil salinity/sodicity for the specific conditions of 
the B-XII irrigation district. 
 
RESUMEN. El monitoreo continuo de la 
salinidad/sodicidad del suelo es esencial en entornos como 
el distrito de riego B-XII (suroeste de España) donde un 
nivel freático salino poco profundo y la agricultura de 
regadío intensivo crean un frágil equilibrio entre la 
acumulación de sales y la lixiviación en la capa superficial 
del suelo. Evaluamos las limitaciones de la detección e 
inversión de inducción electromagnética (EMI) para lograr 
este propósito. 
Las mediciones EMI se realizaron en 2017 y 2020 en una 
parcela de suelo muy arcilloso. Se tomaron muestras de 
suelo en diferentes lugares y profundidades a lo largo de un 
transecto y se analizaron para determinar los parámetros 
relacionados con salinidad/sodicidad. La inversión EMI en 
el transecto arrojó imágenes de conductividad consistentes 
para ambos años y mostró buena relación (R2 = 0.80) con 
estos parámetros. 
Nuestros resultados muestran que la inversión de señales 
EMI ofrece un método potente para monitorear cambios 
espacio-temporales en la salinidad/sodicidad del suelo para 
las condiciones específicas del distrito de riego B-XII. 
 
 

1.- Introduction 

Soil salinization/sodification represents a latent threat to 
soil quality and agricultural sustainability in regions where 
proper agricultural management in response to specific 
environmental conditions has enabled the development of a 
fragile balance between salt buildup and removal rates. 
Potentially changing climate conditions, short-term 
fluctuations in irrigation water availability and quality, and 
saline water table depth, or changes in the soil and water 
management might disrupt this equilibrium with negative 
consequences for crop production and soil functionality 
(e.g. Assouline et al., 2015; Hopmans et al., 2021).  

To keep track of the soil salinity status in such 
environments a growing demand for efficient field 
monitoring methods exists. Yet, conventional soil 
monitoring entails periodical soil sampling and laboratory 
analysis (Corwin and Yemoto, 2017) which are time-
consuming, labor-intensive and expensive. In addition, the 
measurements cannot be repeated at the same locations 
since the soil sampling procedure is destructive. 
Alternatively, networks of permanently installed 
electromagnetic sensors can be used to measure soil 
moisture, temperature and bulk electrical conductivity at 
fixed depths. Although such an approach yields quasi-
continuous measurements in time, it provides only limited 
spatial information at the locations where sensors are 
installed.  

Detailed spatial soil information can be obtained through 
electromagnetic induction (EMI) sensing, which has 
become one of the most popular methods for characterizing 
the spatial variability of soils and their properties and states 
at the field scale (e.g. Doolittle and Brevik, 2014; Pedrera-
Parrilla et al., 2016), since it is fast and easy to deploy in 
the field mainly due to its non-contact and non-invasive 
nature and its large measurement support volumes ( m3). 
This technique allows the simultaneous measurement of the 
integrated apparent electrical conductivity (ECa) measured 
across different soil depths. Under non-saline soil 
conditions, the ECa is usually related with clay content and 
soil water content, among other soil properties, while under 
saline conditions it is the contribution of the solute 
concentration of the soil water that dominates the ECa 
signal. When integrated in a mobile measurement platform, 
these instruments can scan large areas and take thousands 
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of measurements within a couple of hours. The 
georeferenced ECa data are then mapped and related with 
independent measurements of the relevant soil properties 
for calibration (Triantafilis et al., 2000; Nogués et al., 
2006; Corwin and Scudiero, 2016).

Yet, this approach does not directly provide information 
on the vertical distribution of the “true” soil conductivity 
(EC) and the related soil properties. Recent methodological 
advances in hydrogeophysics (Binley et al., 2015) are 
unlocking the full potential of EMI through joint inversion 
of multi-receiver data (Triantafilis and Monteiro Santos, 
2013; McLachlan et al., 2021) by estimating the vertical 
distribution of EC across the soil profile, from which soil 
salinity profiles can be estimated in 2D and quasi-3D 
(Jadoon et al., 2015; Zare et al., 2015; Koganti et al., 2018; 
Farzamian et al., 2019; Paz et al. 2020). 

In this work we evaluate the potential of EMI tomography 
for mapping changes in salinity/sodicity between 2017 and 
2020 in the reclaimed marsh soils of a commercial field in 
the B-XII irrigation district in SW Spain. The specific 
objectives are (1) to provide robust calibration equations to 
estimate the saturated paste extract conductivity (ECe) and 
the exchangeable sodium percentage (ESP) from EC using 
minimal soil analysis data and (2) to map the change in soil 
salinity/sodicity status between both years at different 
depths.   

2.- Material and Methods

2.1. Site description

This study was performed in a 4-ha commercial field in 
the B-XII irrigation district (Lebrija, Seville) (Fig.1), where 
a flourishing agriculture has developed since the early 
eighties on the reclaimed saline marsh soils. The area is 
characterized by an artificially drained shallow saline water 
table and a rather homogeneous heavy clay soil texture 
(Moreno et al., 1981; Dominguez et al., 2001). The 
drainage system in the field consisted of 0.3-m long 
ceramic sections that form parallel 250-m long pipes, 
buried at a depth of 1 m and separated by a distance of 10 
m. The pipes discharges into a drainage channel along the 
northern limit of the field.

Fig.1. Study site location.

The climate of the zone is typically Mediterranean, with 
moderate humid winters and hot dry summers. Annual 
rainfall ranges from 350 to 1100 mm, with an average of 
550 mm. Most of the precipitation falls from November to 
March. There is practically no rainfall during July and 

August. Annual reference evapotranspiration is about 1000 
mm on average.

In 2017, the total rainfall between 1 Sept. and the EMI 
survey day, 21 Nov. (81 days), was 140 mm of which about 
one third was measured the week before the EMI survey. In 
contrast, for survey in 2020, total rainfall since 1 Sept. 
2019 was 180 mm, distributed over a period twice as long 
as compared to 2017. The EMI measurement in 2020 was 
preceded by a long dry period and a smaller amount of 
rainfall just before the EMI measurement. Therefore, the 
soil profile is expected to be wetter in 2017 than 2020, as 
observed also during the soil sampling on both days.

2.2. EMI measurements

Electromagnetic induction surveys were conducted in 
November 2017 and February 2020 using a DualEM21S 
(Dualem Inc., Milton, ON, Canada). This instrument 
contains dual-geometry receivers (horizontal, HCP/ 
perpendicular, PRP) at 1 and 2 m from the transmitter and 
allows simultaneous conductivity sounding down to 
theoretical depths of exploration near 0.5, 1, 1.5 and 3m.

The sensor is operated at a height of 0.105 m above the 
soil surface in a customized polyvinyl chloride (PVC) sled 
town by an all-terrain vehicle (ATV). A real-time 
kinematic differential global positioning system (Trimble, 
Sunnyvale, CA, USA) is used for georeferencing the EMI 
measurements. EMI data and coordinates are logged on a 
mesa3 field computer (Juniper Systems, Logan, UT, USA). 

Due to hardware configuration problems only the PRP2 (1 
m) and HCP2 (3 m) signals were logged during the survey 
in 2017. In 2017 measurements were performed in the 
direction of the drainage pipes and in the perpendicular 
direction. In 2020 measurements were only performed in 
the former direction since the field was ridged and not 
transitable in the perpendicular direction. 

2.3. Soil sampling and laboratory analysis

On both survey dates soil samples were taken at 5 
locations along a transect parallel to the drainage pipes 
(Fig. 2), with 0.2-m depth increments down to 1 m, using a 
0.05-m diameter Edelman soil auger. The 25 soil samples 
obtained on each date were air dried ground and passed 
through a 2 mm sieve. Saturated soil pastes were prepared 
according to the standard method (Rhoades 1982), adding 
deionized water to 200 g of air-dried soil and allowing the 
sample to reach equilibrium during 24. Subsequently, the 
extracts were collected and ECe and pH was measured 
using a conductivity/pH meter (Hanna Instruments, 
HI5521). The extracts were analyzed for Na+, K+, Mg2+, 
and Ca2+ using an inductively coupled Plasma Optical 
Emission Spectrometry (ICP-OES) (Perkin Elmer Avio
200), for nitrate (NO3

-) using an ion-selective electrode 
(IMACIMUS Multi ION), for Cl- an argentometric method 
(APHA, 1989; Mohr Method, 4500 Cl- B) and an 
automatic titrator (Mettler Toledo T70); and for sulfate 
(SO4

2-) using a turbidimetric method (APHA, 1989, 
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Method 4500 SO4= E) and spectrophotometer UV-VIS 
(Varian Cary 50).

EC and pH for soil samples was also measured in a 1:2,5 
aqueous extract.  

Sodium adsorption ratio (SAR) was computed as 
, with the cation 

concentration in meq L-1. The exchangeable sodium 
percentage (ESP) was estimated using

(U.S. Salinity Laboratory 
Staff, 1954).

2.4. Data processing, inversion and salinity/sodicity 
classification

Raw georeferenced EMI measurements were corrected for 
positional error caused by delays in data transmission, 
reception or logging during the field measurement 
according to the method proposed by González Jiménez et 
al. (2021, this issue). The coordinate correction was 
performed using a time-lag of 1.45 s and 1.55 s for the 
signals PRP2/HCP2 resulting in a translation of 2.65 m and 
2.83 m for PRP2/HCP2, respectively.  Before applying this 
coordinate correction procedure spatially inconsistent and 
erroneous EMI (or ECa) measurements were removed from 
the dataset.

The spatial data were interpolated on a 0.5 0.5 m grid 
using the inverse distance method as implemented in Surfer 
(Golden Software, LLC Boulder, CO) and descriptive 
statistics were calculated and compared for the surveys of 
2017 and 2020.

To estimate the vertical distribution of the electrical 
conductivity (EC) the four EMI signals were inverted using 
the EM4Soil software (EMTOMO, Lisbon). EM4Soil 
estimates pseudo-bidimensional images of the EC 
distribution across the soil profile, conditioned on the 
neighboring ECa values. According to the imposed 
smoothness condition for the estimation of the EC profile, 
two inversion algorithms are considered (S1 y S2). Both 
are variations of the Occam regularization method (de 
Groot Hedlin and Constable, 1990), being the inversion 
algorithm S2 the one used in this study since it produced 
smoother results than S1. More details about the inversion 
algorithm can be found in Triantafilis y Monteiro Santos 
(2013). 2D inversions were performed along the transect 
while 3D inversions for 2017 and 2020 were performed for 
the entire field, from which maps of EC were obtained for 
the different sampling depths: 0.1, 0.3, 0.5, 0.7 and 0.9 
meters.

The EC values were then converted to ECe and ESP using 
calibration equations with the analytical soil data. LOOCV 
is a cross-validation method that calculates as many models 
as there are observations. The model was fitted each time 
with all the observations except one, which is used to 
evaluate the model. The "caret" package from R has been 
used for the calculation (Kuhn et al., 2020). The resulting 
maps were categorized according to the criteria of the 
American salinity/sodicity soil classification, 
distinguishing 4 zones: Non-saline and non-sodic if ECe < 

4 dS/m and ESP < 15%, sodic if ECe < 4 dS/m and ESP > 
15%, saline-sodic if 4 < ECe < 8 dS/m and ESP >15%, and 
highly saline-sodic if ECe >8 dS/m and ESP > 15%.

Fig. 2. Mapps of EMI signals (ECa values) and location of the sampling 
points along the transect for the surveys of 2017 and 2020.

3.- Results and Discussion

3.1. EMI measurements in 2017 and 2020

The average PRP2 and HCP2 signals were 26 and 17 % 
larger in 2017 than in 2020, respectively, indicating overall 
more conductive conditions in 2017 (Table 1). In 2017 and 
2020 the PRP2/HCP2 ratio was 1.2 and 1.3, respectively, 
indicating a slightly less homogeneous conductivity across 
the soil profile in 2017. The spatial variability (CV) was 
larger in 2020 for both signals which points towards a more 
homogeneous conductivity across the field in 2017. For 
both surveys the CV was smaller for the deep signal 
(HCP2) than for the shallow signal (PRP2), indicating a 
more homogenous conductivity distribution in the subsoil 
than in the topsoil.

Table 1. Descriptive statistics of the interpolated EMI signals (mS/m).

PRP2 2017 PRP2 2020 HCP2 2017 HCP2 2020
m* 474.0 376.0 566.8 484.2
min 204.9 96.1 337.1 266.3
max 831.0 753.1 790.0 780.7
med 477.5 376.3 574.4 491.1

s 118.7 109.3 98.3 100.0
CV 0.25 0.29 0.17 0.21

Curt. -0.826 -0.779 -0.885 -0.866
Skewn. 0.019 0.128 -0.185 -0.121
*m: mean; med: median; s: standard deviation; CV: coefficient of variation

3.2. Temporal evolution of EMI 

Fig. 3a shows the increment of the PRP2 signal from 
2017 to 2020 ( PRP2=PRP22020-PRP22017). The smallest 
increments (near zero) were observed in the areas with the 
lowest PRP2 values as also confirmed by Fig. 3b where the 
deviation from the 1:1 line is largest for the largest PRP2 
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values. The histogram and cumulative probability curve of 
PRP2 (Fig. 3c) shows that PRP2 decreased from 2017 to 

2020 in most of the field. At about 50 % of the pixels PRP2 
decreased by more than 100 mS/m from 2017 to 2020. 
 

 
 
Fig. 3. a) Increments of the PRP2 signals from 2017 to 2020, b) scatter 
plot and deviation from 1:1 line, and c) histogram of increments and 
cumulative probability. 
 
 
3.3. Inversion of EMI datasets 

Fig. 4a and Fig. 4b show the EC images of the soil profile 
along the transect (Fig. 2) for 2017 and 2020, respectively. 
The most visible differences between both surveys are 
observed in the top 0.5 m of the soil profile, with larger 
zones of small EC in 2020. However, the strongest absolute 
increments are found below 0.5 m. (Fig. 4c).  

 

Fig. 4. a) Inverted ECa (EC) profile along the transect for 2017, b) 2020, 
and c) increments between 2017 and 2020 ( EC=EC2020-EC2017). 

 
The relationships between inverted ECa and ECe for 2017 

and 2020 (Fig. 5) show that although EC values where 
higher in 2017 than in 2020, ECe shows a different 
tendency, with higher ECe at intermediate depths in certain 
points. These apparently different relationships for EC and 
ECe between 2017 and 2020 show in this case the 
predominant effect of variations in soil water versus salt 
content on the EMI measurements. 

 

  

Fig. 5. Relationships between a) EC and b) ECe for 2017 and 2020. 

 
 
3.4. Correlation between EC and analytical soil parameters 
 

As expected, ECe and ESP increased with depth (Table 
2). Overall, ECe was larger in 2020, except for the top and 
deepest soil layer (0.9 m), although differences in ECe 
between both years were only significant at 0.3 m depth. 
ESP showed a similar pattern, although in this case 
differences between both years were not significant for 
none of the studied depths. Overall, significant correlations 
between EC and ECe and ESP were particularly observed 
for the deeper soil layers and for the wettest year (2017). 
This result should be considered with caution since only 
five data points were available at each depth, although it 
provides evidence of the potential of EMI sensors for 
assessing and monitoring soil salinity/sodicity in this kind 
of environments. 
 
 
Table 2. Descriptive statistics of ECe (dS/m) and ESP, and Pearson 
correlation coefficient with EC by depths.  
 

*m: mean; med: median; s: standard deviation; CV: coefficient of 
variation; R: Pearson correlation coefficient with EC. 
 
 
 

   0.1 m 0.3 m 0.5 m 0.7 m 0.9 m 

ECe 

m* 2017 1.56 1.68 2.48 4.27 6.56 
2020 1.29 2.76 2.92 4.61 6.07 

T-test p 0.28 0.03* 0.46 0.72 0.61 

med 2017 1.24 1.64 2.23 3.05 5.35 
2020 1.20 2.82 2.36 3.98 5.50 

s 2017 0.73 0.40 1.33 3.08 4.36 
2020 0.36 0.44 2.16 3.13 3.66 

CV 2017 0.47 0.24 0.54 0.72 0.66 
2020 0.28 0.16 0.74 0.68 0.60 

R 2017 -0.02 0.92 0.96 1 0.99 
2020 -0.12 0.22 0.98 0.84 0.96 

ESP 

m* 
2017 14.55 17.52 22.70 31.67 42.88 
2020 13.42 21.81 21.42 35.83 41.93 

T-test p 0.80 0.51 0.84 0.54 0.70 

med 
2017 12.64 17.41 20.09 29.78 44.81 
2020 13.27 21.56 22.33 36.05 44.66 

s 
2017 8.42 3.02 12.92 15.39 15.79 
2020 1.62 8,65 5.90 6.62 13.53 

CV 
2017 0.58 0.17 0.57 0.49 0.37 
2020 0.12 0.40 0.28 0.18 0.32 

R 
2017 0.33 0.72 0.96 0.71 0.83 
2020 -0.06 -0.37 0.61 0.85 0.83 
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3.5. Calibration of EMI signals

Due to its anomalous behavior data from point P1 was 
excluded from the calibration exercise. This point is 
located at the headland near the service track and the 
drainage channel (Fig 2), where a superficial drainage tube 
is provisionally installed in winter to alleviate flooding, 
causing different hydrological conditions than in the rest of 
the field. 

Different calibration equations were tested. The largest 
coefficient of determination (R2) between EC and ECe and 
ESP was found for linear equations with R2 ranging from 
0.77 to 0.83 (Fig. 6).

Fig. 6. Relationships between a) EC and saturated paste extract EC (ECe) 
for 2017 and b) for 2020 and between c) EC and exchangeable sodium 
percentage (ESP) for 2017 and d) for 2020. In black, the soil samples of 
P1 at different depths that were removed for fitting purposes.

These regression models were validated using the “Leave 
one out” Cross-Validation (LOOCV) test. 

The overall result of this test is summarized in three 
estimators: Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE) and Coefficient of Determination 
(R2). The results of the LOOCV test are shown in Table 3.

Table 3. LOOCV test results.

EC
2017 2020

RMSE MAE R2 RMSE MAE R2

ECe 1.44 1.08 0.75 1.35 1.09 0.74

ESP 14.67 9.16 0.59 6.85 5.75 0.71

Similar results were obtained in 2017 and 2020 for ECe, 
but for ESP results were substantially better for 2020. 
Overall, R2 ranged from 0.59 (ESP 2017) to 0.75 (ECe 
2017). The small ESP in 2017 could be due to the presence 

of some anomalous values in view of the RMSE observed 
in that year. 

This test verified the consistency of our models for 
estimating ECe and ESP from the EC values.

3.6. 3D evolution of ECe and ESP with depth between 
2017 and 2020

Although EC was overall larger at all depths in 2017, ECe 
was larger in 2020, except for the 0.9 m depth. Also, larger 
ESP values are observed in 2020, down to approximately 
0.5 m from where the trend changed (Fig. 7).

Fig. 7. Relationships of a) EC, b) ECe and c) ESP between 2017 and 2020 
for different depths.

The larger EC values obtained in 2017, as compared to 
2020 are possibly the result of a wetter soil profile in the 
former year, as visually observed during the soil sampling. 
Figure 8 shows the accumulative rainfall between 1 Sept. 
2017 and 2019 and the EMI surveys in 2017 and 2020, 
respectively. Although the total accumulative rainfall in 
2020 was larger, the rainfall event of 85 mm between days 
64 and 65 caused wetter soil conditions in 2017 as 
compared to the survey in 2020. This might possibly have 
promoted the leaching of salts in 2017 down to 0.9 m 
where the drains are located. In contrast, in 2020, when the 
profile soil water content was smaller, this process may 
have been less pronounced, leaving larger salt contents 
than in 2017 in the upper soil horizons.

Fig. 8. Accumulated precipitation from the beginning of the 
hydrometeorological year (1 Sept.) to the date of measurement with the 
sensor.

From the combination of the ECe and ESP maps, soil 
classification maps were prepared for both years according 
to different salinity and sodicity levels.
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Fig. 9. Changes in salinity/sodicity classification of the study field for different depths.
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The increment in the salts content between 2017 and 2020 
is particularly apparent in the topsoil (Fig. 9) where the 
classification of the entire field changed from non-
saline/non-sodic in 2017 to sodic in 2018. Changes in 
deeper horizons are less drastic and correspond to certain 
areas within the field that correspond to maximum of 20% 
of the total area of the field. From 0.5 m on the entire field 
is classified as sodic or saline-sodic, being the predominant 
class becomes highly saline-sodic for the deepest soil 
horizon. In 2020, the horizon at 0.7 m showed an evident 
transition between the 0.5 m and 0.9 m depths. This 
transition is not observable in 2017, when the presence of 
highly saline-sodic soil at 0.9 m is more abrupt with respect 
to the upper horizon. In addition, as can be seen for the 
horizons at 0.3 and 0.7 m in 2020, when the soil was drier, 
the zones that begin to change towards classifications of 
saline-sodic or highly saline-sodic are mainly located near 
the eastern edge of the field where there is a clear trend in 
the accumulation of salts. The effect of moisture in the soil 
profile is decisive for the washing of salts to the depth of 
the drainage network for the conservation of this 
agricultural soil. The changes experienced between the two 
years show that today the balance of these soils is very 
fragile and that water management here continues to be 
essential. 

Likewise, our results indicate that the inversion of EMI 
values is a very powerful tool for monitoring changes in 
salinity and sodicity in this type of soils. 
 
 
4.- Conclusion 
 

The EMI measurements were larger in 2017 than in 2020, 
particularly for the PRP2 signal, which explores the soil 
approximately down to 1m dept. This indicates larger soil 
apparent electrical conductivity values in 2017 than in 2020 
which could be associated to higher soil salinity but also 
larger soil water content in 2017 as compared to 2020. 
Laboratory analysis of salinity/sodicity soil parameters 
showed however smaller values for 2017, particularly in 
the topsoil.  

Inversion of the EMI signals for both years showed the 
EC changes along the soil profile from which the samples 
were taken. EC showed a strong correlation with the 
salinity/sodicity parameters, which allowed us to obtain 
linear calibration models for the estimation of ECe and 
ESP from EC, which were validated by LOOCV cross-
validation. 

Depth-specific EC maps were obtained through inversion 
for each sampling depths. The linear calibration models 
were used to estimate the depth-specific spatial distribution 
of ECe and ESP, which allowed classification of the soil 
according to its salinity and sodicity characteristics  

Our spatio-temporal analysis in this field shows that the 
soil profile in 2017 was wetter than in 2020. This results in 
better salt leaching conditions in 2017 as opposed to the 
dryer conditions in 2020, leading to higher levels of soil 
salinity and sodicity, a trend that is maintained for all 
depths except for the 0.9 meter depth where the drainage 

network is located and where only small differences were 
observed between both years with respect to the evaluated 
soil parameters.  

Our results show that the use of EMI sensors such as 
DualEM-21S show a strong potential for detailed field-
scale monitoring of salinity and sodicity in the soils of the 
B-XII irrigation district. Monitoring of soils at risk of 
resalinization using EMI is essential since laboratory 
analysis of soil samples becomes prohibitive for economic 
reasons. 

Future work will address the reliability of the provided 
calibrations for the DualEM21-S sensor by evaluating their 
performance in other fields of the B-XII irrigation district. 
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