
Estudios en la Zona No Saturada. Vol. XV 

 211 

EVALUATING SWAT MODEL’S APPLICATION FOR ESTIMATING STREAMFLOW IN THE CIDACOS 
RIVER WATERSHED IN NAVARRE, SPAIN 

B.O. Oduor1*, M.A. Campo-Bescós1, J. Casalí1 and N.S. Lana-Renault2 

1Department of Engineering, Public University of Navarre, Campus de Arrosadía s/n, 31006 Pamplona, Navarra, Spain, email: 
brianomondi.oduor@unavarra.es, miguel.campo@unavarra.es, jcs@unavarra.es, web: https://www.unavarra.es/ 
2Department of Human Sciences, University of La Rioja, 26006 Logroño, Spain, email: noemi-solange.lana-renault@unirioja.es, 
web: https://www.unirioja.es/ 
 
 
RESUMEN. Se utilizó el modelo SWAT para simular el 
caudal del río Cidacos en Navarra. El SWAT podría 
ayudar a predecir los futuros impactos hidrológicos 
debidos a los cambios en el uso del suelo agrícola, como 
la transformación de la agricultura de secano a la de 
regadío. La idoneidad del modelo se evaluó mediante la 
parametrización, la sensibilidad, la incertidumbre, la 
calibración, la validación y la evaluación de su 
rendimiento mediante indicadores estadísticos. Los 
caudales fueron calibrados y validados entre los años 
2000-2010 y 2011-2020 respectivamente en la estación 
de aforo de Olite. Las incertidumbres en el modelo se 
analizaron mediante los factores p y r que resultaron 
satisfactorios durante la calibración y la validación. Los 
índices estadísticos de rendimiento proporcionaron una 
buena coincidencia entre los valores observados y los 
simulados, lo que indicó que el modelo SWAT era muy 
satisfactorio para la simulación del flujo de la corriente 
en la cuenca. 
 
ABSTRACT. The Soil Water Assessment Tool (SWAT) 
model was used to simulate streamflow in the Cidacos 
River in Navarra. SWAT could help in predicting future 
hydrological impacts due to agricultural land use changes 
such as transformation from rainfed to irrigated agriculture. 
The model’s suitability was assessed by carrying out 
parametrization, sensitivity and uncertainty analysis, 
calibration, validation, and assessing its performance using 
statistical indicators. Streamflow in the watershed was 
calibrated and validated between the years 2000-2010 and 
2011-2020 respectively at the Olite gauging station. 
Uncertainties in the model were analyzed using the p-factor 
and r-factor which satisfactory results for both calibration 
and validation periods. Statistical performance indices 
provided a good match between the observed and 
simulated values which indicated that the SWAT model 
was very satisfactory for simulation of stream flow in the 
watershed. 
 
 
 
1.- Introduction 

 
Agriculture is one of the most important sectors of any 

regional or national economies in the world. It is the main 
source of livelihood as well as the backbone of most 
nations’ economic systems globally with up to more than 
60 percent of the population directly dependent on it as a  

 
 
means of living (FAO, 2017). However, the intensification 
of agriculture creates a lot of pressures on the available 
water resources and the environment. Agriculture is the 
highest global freshwater consumer accounting for more 
than 90 percent of the world water resources withdrawals 
(Siebert et al., 2010). Irrigation forms the bulk of 
agricultural water demand with over 70 percent 
consumption (Zeng and Cai, 2014). Despite its immense 
benefits to the society and economy, agricultural activities 
have the potential to cause substantial damage to the 
environment especially affecting the water quality through 
non-point source pollution from sedimentation (Chahor et 
al., 2014; Giménez et al., 2012; Merchán et al., 2018), the 
application of pesticides (Muñoz-Carpena et al., 2018), 
fertilizers and agrochemicals such as nitrate contamination 
from agricultural fertilizer application which is a threat to 
human health and the environment (Sutton et al., 2011). 
The intensity of erosion processes is usually much higher 
in agricultural environments than for other soil uses 
(Almagro et al., 2016; Boardman and Poesen, 2006). 

Globally, the area under irrigation farming has almost 
doubled within the 50 years period from 1965 up to 2015 
having increased from 170 Mha to 333 Mha (FAO and 
IWMI, 2018). In Europe, the irrigable area increased by 13 
percent for the 10 years period from 2003 to 2013, and in 
Spain the increase was around 11 percent in the 10 years 
period between 2007-2017 (MAPA, 2021). Irrigation 
which covers only 14 percent of the surface area 
contributes to over 50 percent to Spain’s final agricultural 
production which is on average six times more than rainfed 
areas (MAPA, 2021). In Navarre, irrigated area has 
increased by over 25 percent (110,000 ha) for the period 
between 2000 and 2015 with pressurized irrigation being 
implemented in those lands (DDRMAAL, 2021). Previous 
studies have shown that the transition from rainfed to 
irrigated agriculture affects water quality by increasing its 
salinity (Duncan et al., 2008; Pulido-Bosch et al., 2018) 
and nitrate concentration (Muñoz-Carpena et al., 2002), 
among other environmental problems such as 
overexploitation of aquifers or pollution with pesticides 
(Muñoz-Carpena et al., 2018). Washing out the salt from 
the soil profile is a requirement of irrigated agriculture 
(Letey et al., 2011), as salinity reduces the availability of 
water for plants. Nitrate pollution as a result of 
eutrophication threatens the quality of water for human 
consumption as well as the environment (Merchán et al., 
2020). 

This study builds on the previous research conducted by 
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Merchán et al. (2020) which analyzed the effects of 
irrigation implementation on salinity and nitrate 
concentration in the Cidacos River Watershed in Navarre, 
Spain. The main objective of this study was to evaluate the 
SWAT model’s capability to simulate streamflow in the 
Cidacos River Watershed in Navarra in order to predict 
future hydrological and agricultural land use changes such 
as transformation from rainfed to irrigated agriculture. This 
was done through conducting sensitivity analysis, 
calibration, and validation of the SWAT model, as well as 
assessing its performance using statistical indicators such 
as Nash-Sutcliffe, RMSE, R2 and PBIAS.  

 
 

2.- Materials and Methods 
 
2.1. Study Area 
 

The Cidacos River is a tributary of the Aragón River, 
which is one of the tributaries of the Ebro River. It is 
located within latitudes 42˚ 69’ and 42˚ 34’ North and 
longitudes 1˚ 72’ and 1˚ 47’ West which is 
approximately 15 km south from the city of Pamplona, 
the capital of the “Floral” Community of Navarre in 
Spain (Fig. 1). The river is formed in the town of 
Mendívil by the confluence of the Arlusia stream and 
the Mairaga stream. It spans a length of approximately 
44 km that runs through Valdorba and the foothills of 
Tafalla-Olite to the mouth around Traibuenas where it 
flows into the Aragón River. The Cidacos River drains a 
watershed of 477 km2 that mostly follows the north-
south direction with an approximate width of 15 km in 
its widest section. The headwater of the watershed is 
somewhat mountainous with high altitudes of slightly 
over 1000 m above sea level at the North of the 
watershed, but then crosses down to slightly uneven to 
low terrain of approximately 300 m above sea level at 
the river’s mouth in Traibuenas where it joins with the 
Aragón River. The climate of the watershed is mild 
Mediterranean, with cold winters and high levels of 
summer aridity that varies spatially from North to 
South.  The watershed receives annual precipitations 
ranging from 800 mm to 400 mm, characterized by a 
strong inter-annual irregularity and the most rainfalls in 
the months of April and May (Merchán et al., 2020). 

The predominant land use/land cover (LULC) in the 
study area is agriculture covering more than half (53 
percent) of the watershed. The watershed is characterized 
with rainfed agriculture in the upper reaches until around 
Olite town whereas the lower reaches mostly practice 
pressurized irrigated agriculture. The “Canal of Navarre” 
supplies irrigation water from a reservoir located outside 
the watershed in the North of Navarre. Other major land 
uses in the study area include forests covering a quarter of 
the watershed (25 percent), pasture and bushlands at 17 
percent, and the rest of the area including urban, residential 
areas, built-up land, bare land, and water bodies covering 
the remaining 5 percent. All the land uses in the watershed 
are as shown in Fig 2b. 

 
Fig. 1. The Cidacos River Watershed. 
 

The most predominant soil types in the watershed are 
Haplic Calcisols soils (about 51.6%) found in various parts 
of the watershed, Fluvic Cambisols soils (26.1%) mainly 
found along the river network path and Calcaric Regosols 
(18%). Other soils within the watershed included: Haplic 
Phaeozem (1.7%), Calcic Kastanozems (1.6%), Fluvic 
Phaeozem (0.4%), Eutric Fluvisols (0.3%), and Dystric 
Cambisols (0.2%) as shown in Table 1. The most abundant 
soil textures were loam and clay-loam found in most 
agricultural areas in the watershed whereas loamy-sand and 
sandy-loam soils are found on the eroded hillslopes. 

 
Table 1. Major soil distribution in the Cidacos River Watershed. 
USDA Soil 
Name 

FAO Soil 
Name 

Symbol Area 
Covered 
(km2) 

% 
Covered 

Soil 
Texture 

Typic 
Calcixerepts 

Haplic 
Calcisols 

CLh 246.31 51.63 Loam 

Typic/ 
Fluventic 
Haploxerepts 

Fluvic 
Cambisols 

CMf 124.49 26.10 Clay-
Loam 

Typic/Lithic 
Xerorthents, 
Udorthent 

Calcaric 
Regosols 

RGc 85.98 18.02 Loamy-
Sand 

Lithic-Ruptic 
Haplustolls 

Haplic 
Phaeozem 

PHh 8.19 1.72 Clay-
Loam 

Typic 
calcixeroll 

Calcic 
Kastanoze
ms 

KSk 7.47 1.56 Loam 

Fluventic 
Haploxerolls 

Fluvic 
Phaeozem 

PHf 1.93 0.41 Loam 

Typic 
Xerofluvent 

Eutric 
Fluvisols 

FLe 1.58 0.33 Clay-
Loam 

Typic 
Dystrudepts 

Dystric 
Cambisols 

CMd 1.08 0.23 Sandy-
Loam 

 
2.2. Description of the SWAT Model 
 

The SWAT model is a freely available open-source 
software developed by the United States Department of 
Agriculture’s Agricultural Research Service (USDA-ARS) 
to assist water resources managers, policy experts and 
decision makers to predict and quantify the impact of land 
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use management on water and diffuse pollution in small 
and large watersheds, with different soil types, land use 
and management practices (Lévesque et al., 2008). SWAT 
is a data driven, semi-distributed, continuous timescale, 
physically and process-based hydrological model that 
simulates water, sediment and agricultural 
chemicals/pollutant yields. The model will be built on the 
QGIS interface through its QSWAT plugin. The 
hydrologic balance in SWAT is simulated for each 
Hydrological Response Unit (HRU). The land phase of the 
hydrologic model simulated by the SWAT model is based 
on the water balance equation as shown in equation 1 
(Arnold et al., 2012; Neitsch et al., 2011). 

 
       

(1) 
     
Where,  is the final soil water content (mm of water), 

 is the initial soil water content on day i (mm of water), 
t is the time (days),  is the amount of precipitation on 
day i (mm of water),  is the amount of surface runoff 
on day i (mm of water),  is the amount of evaporation on 
day i (mm),  is the amount of water entering the 
vadose zone on day i (mm of water), and  is the 
amount of return flow on day i (mm of water). 
 
2.3. Data Acquisition and Model Set-up 
 

The SWAT model requires several input dataset variables 
in order to be run, calibrated and validated. Both geospatial 
data and daily hydrometeorological data were used to set 
up and run the model. The geospatial data used in this 
study were obtained from the Government of Navarre, 
Spatial Data Infrastructure of Navarre (IDENA) website 
(https://sitna.navarra.es/geoportal/geop_sitna/geoportal.asp
x). The geospatial data used included the Digital Elevation 
Model (DEM, 25m resolution ETRS89 UTM Zone 30N 
projection) of the Cidacos River (CR) Watershed (Fig. 2a), 
the land use/land cover (LULC, 2019) map (Fig. 2b) and 
soil type map data of 1:25000 scale (Fig. 2c) were used. 
The required hydrometeorological data was the daily 
meteorological data which was obtained from 25 weather 
stations (14 automatic stations and 11 manual stations) 
owned and operated by the Government of Navarre that are 
located inside and nearby the watershed. The 
meteorological data included daily data of precipitation 
(mm), maximum and minimum daily temperatures (˚C), 
solar radiation (MJm-2s-2), wind speed (ms-1), and relative 
humidity (%) data. The daily observed streamflow data 
(m3s-1) at the Olite gauging station was used to calibrate 
and validate the model. The Olite gauging station was 
chosen as it was the only discharge point with a long-term 
data having been installed in 1988. The station is operated 
and maintained by the Government of Navarre and the data 
was obtained from their website 
(http://www.Navarre.es/appsext/AguaEnNavarre/ctaDatos
Historicos.aspx). The daily discharge data was for the 
period 2000-2020. It’s imperative to note that the Olite 

station only covers the area of the watershed under rainfed 
agriculture. 
 

 
Fig. 2. The Cidacos River Watershed: (a) DEM; (b) 2019 Land Use/Land 
Cover (LULC) Map; (c) Soil Type Map. 

The model set-up was preceded by preparation and 
processing of the required spatial datasets such as DEM, 
soil and land use grid maps as well as discharge outlet 
points on the QGIS 3.18 interphase. The meteorological 
and observed streamflow data were processed and analyzed 
in the R-software before being converted to the required 
SWAT format (text files). The streamflow data was 
checked for missing gaps, consistency and if there were 
any changes in the streamflow using the R changepoint 
package, ‘cpt’, following the methodology by Killick and 
Eckley (2014) for single changepoint detection (AMOC). 
The daily streamflow data was then converted into monthly 
averages which were used for the streamflow calibration 
and validation of the model. The monthly time-step was 
adopted since a review of previous studies (Abbaspour et 
al., 2018) showed that the SWAT model performed better 
at monthly time-step than daily time-steps. After the data 
preparation, the model was set up in the QSWAT3 1.1.1 
interphase. The following three key steps were carried out 
during the model set-up in QSWAT: watershed 
delineation, creation of HRUs, and editing inputs and 
running SWAT. The outputs from QSWAT were then 
transferred to SWATCUP 5.1.6 which is a standalone 
software where the processes of parameterization, 
uncertainty and sensitivity analysis, calibration, validation 
and evaluation of the model performance was done. The 
multi-site, semi-automated inverse modelling routine 
SUFI-2 procedure (Abbaspour, 2015) was used for the 
model calibration and validation using observed data at a 
monthly time-step. 
 
2.4. Sensitivity Analysis, Calibration and Validation 
 

The SWAT Calibration and Uncertainty Procedures 
(SWAT-CUP) software with Sequential Uncertainty 
Fitting, version 2 (SUFI-2) algorithm (Abbaspour, 2015; 
Abbaspour et al., 2018) was used. SWAT-CUP consists of 
five different calibration routines which include: 
Sequential Uncertainty Fitting, version 2 (SUFI-2); Particle 
Swarm Optimization (PSO); Generalized Likelihood 
Uncertainty Estimation (GLUE); Parasol Solution 
(ParaSol); and Markov Chain Monte Carlo (MCMC). 
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These routines can be used to model SWAT outputs files 
as well as up to eleven different objective functions that 
can be carefully selected based on the study objective with 
an option for multi-objective calibration where any set of 
combination of the objectives can be chosen. 

Simulation runs were carried out using the available data 
timeseries for 31 years with the initial 10 years from 1990-
1999 being used as the model warm-up period, that is, 
Number of Years Skipped (NYSKIP), and then from 2000-
2010 and 2011-2020 to be used for the model calibration 
and validation respectively. Calibration was done at a 
monthly time-step by setting the streamflow at the Olite 
gauging station as the target variable. The calibrated 
parameters and their uncertainty ranges were kept constant 
and then used for the validation of the model. The 
parameters to be considered for calibration were 
determined from the abundant existing literature 
(Abbaspour, 2015; Abbaspour et al., 2015, 2018; Kamali et 
al., 2017; Kouchi et al., 2017; Rouholahnejad et al., 2014). 
Streamflow parameters usually used in SWAT modeling 
within the Mediterranean region are detailed in in Table 2 
including their model allowable ranges. Among these 
parameters, a set of 11 key streamflow parameters were 
selected for use in the calibration process after a sensitivity 
analysis. 

 
Table 2. SWAT model parameters used for streamflow simulation. 

Parameter Description Allowable 
Range 

CN2 Initial SCS runoff CN number for moisture 
condition II (dimensionless) 

35 - 98 

ALPHA_BF Baseflow alpha factor (1/days) 0 - 1 
SOL_K Saturated hydraulic conductivity (mm/hr.) 0 - 2000 
SOL_AWC Available soil water content (mm H2O/mm of 

soil) 
0 - 1 

SOL_BD Soil Bulk density (Mg/m3 or g/cm3) 0.9 - 2.5 
SOL_Z Depth of soil layer (mm) 0 - 3500 
USLE_K USLE equation soil erodibility (K) factor (units: 

0.013 (metric ton m2 hr.) / (m3-metric ton cm)) 
0 - 0.65 

CH_N2 Manning’s “n” value for the channel 
(dimensionless) 

-0.01 - 0.3 

CH_K2 Channel hydraulic conductivity (mm/hr.) -0.01 - 500 
CH_COV2 Channel cover factor (dimensionless) -0.001 - 1 
SURLAG Surface runoff lag time (days) 0.05 - 24 
ESCO Soil Evaporation compensation factor 

(dimensionless) 
0.01 - 1 

EPCO Plant uptake compensation factor (dimensionless) 0.01 - 1 
GWQMN Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm H2O) 
0 - 5000 

GW_DELAY Groundwater delays (days) 0 - 500 
GW_REVAP Ground water “revap” coefficient or coefficient of 

water rise to saturation zone (dimensionless) 
0.02 - 0.2 

SLSUBBSN Average slope length of basin (m) 10 - 150 
CANMX Maximum canopy storage (mm H2O) 0 - 100 
SLSOIL Slope length for lateral subsurface flow (m) 0 - 150 
REVAPMN Water depth in the aquifer for the occurrence of 

water rise to the unsaturated zone (mm H2O) 
0 - 500 

BIOMIX Efficiency of soil biological mix (dimensionless) 0 - 1 
SOL_ALB Soil Albedo (dimensionless) 0 - 0.25 
OV_N Manning’s “n” value for overland flow 

(dimensionless) 
0.01 - 30 

HRU_SLP Average slope steepness (m/m) 0 - 1 
SOL_CRK Crack volume potential of the soil (dimensionless) 0 - 1 

 
The global sensitivity analysis in which all the 

parameters change at the same time was carried out to 
identify the most sensitive parameters by calculating the 

multiple regression computations using equation 2. This 
system regresses the Latin hypercube generated parameters 
against the objective function values (Abbaspour, 2015). A 
t-test was then used to identify the relative significance of 
each parameter, bi. 

 
    (2) 

 
where,  and ;   and  are the standard 

deviation of simulated and measured data;  and  are 
the means of simulated and measured data; and bi is the 
relative significance of each parameter. Analysis of the 
sensitivity of the parameters was based on the p-values and 
t-stat. The smaller the p-value, the more sensitive the 
parameter was and vice versa. The best combination is a 
very small p-value and a large t-value (absolute) to obtain 
the most sensitive parameter. Parameters that had p-values 
below 0.05 were considered as highly sensitive. 

The sensitivity analysis was performed to help identify 
the most sensitive parameters that had the greatest impact 
on the model outputs so as to be used in the calibration 
process (Arnold et al., 2012). Larger parameter 
uncertainties were initially assumed so as to ensure that 
most of the observed data could be captured within the 95 
Percent Prediction Uncertainty (95PPU) band (Abbaspour 
et al., 2018). 95PPU accounts for all the uncertainties 
within the model combined. The parameter ranges were 
then adjusted after every iteration run during the calibration 
phase until most of the observed data were bracketed in the 
95PPU band. The model was considered satisfactory as 
long as more than 50% of the observed flow data were 
bracketed within the 95PPU, that is, p-factor > 0.5.   
 
2.5. Model Performance Metrics 
 

To evaluate the model’s performance, several statistical 
performance indicator techniques were adopted. Moriasi et 
al. (2007) recommends the Nash-Sutcliffe efficiency 
(NSE), ratio of the root mean square error to the standard 
deviation of observed data (RSR), Coefficient of 
Determination (R2), and percent bias (PBIAS) as the most 
appropriate quantitative statistical techniques for SWAT 
Model evaluation. The value of NSE indicates how best the 
plot of observed versus simulated data fits the line 1:1. 
NSE values ranges between -∞ to 1. A value of 1 indicates 
a perfect match between the observed and simulated data. 
RSR is calculated as the ratio of the Root Mean Square 
Error (RMSE) and standard deviation of observed data. 
RSR values vary from 0 to a large positive integer, where a 
value of 0 indicates no RMSE thus optimal (perfect 
model).  RMSE shows the measure of mean residual 
variance. The coefficient of determination (R2) estimates 
the likelihood of the simulated values corresponding to the 
observed data. R2 provides an estimate of how many data 
points fall within the results of the best fit line formed by 
the regression equation. R2 values ranges from 0 to 1, with 
a value of 1 being a perfect correlation. PBIAS indicates 
the deviation of the results from the observations expressed 



Estudios en la Zona No Saturada. Vol. XV 

 215 

as a percentage. An ideal model should have a PBIAS of 0. 
However, models tend to have either a positive or negative 
PBIAS which generally implies underestimation or 
overestimation of the observations respectively.  The 
model performance was considered as satisfactory, 
provided the values of the NSE > 0.5, RSR ≤ 0.7, R2 > 0.5, 
and if PBIAS ±25% for streamflow. 
 
 
3.- Results and Discussion 
 
3.1. Parameterization and Sensitivity Analysis 
 

The sensitivity analysis was used to determine which 
processes are most dominant in the watershed. This was 
achieved after five iterations with 500 simulations each in 
SUFI-2. Parameters that influenced the overall 
hydrological processes in the catchment and that need to be 
taken into consideration during model calibration and 
validation were identified (Table 3). SWAT has two types 
of sensitivity analyses: local (the one-at-a-time) sensitivity 
analysis and the global sensitivity analysis. In the local 
sensitivity analysis, all parameters are fixed, and change is 
only made to one parameter at a time. However, since the 
sensitivity of one parameter depends on the sensitivity of 
the other values, this method could yield some problems. 
Additionally, it is also very slow and quite time consuming 
hence not recommended (Abbaspour et al., 2015).   
Generally, the global sensitivity analysis is more 
acceptable and applicable. In the global sensitivity 
analysis, changes in all parameters are done at the same 
time. The larger the absolute value of t-stat, the more 
sensitive a parameter will be and the lower the absolute 
value the less sensitive the parameter is. The rejection or 
acceptance of the null hypothesis that a parameter is not 
sensitive is based on the p-values. The lower the p-values 
the more sensitive the respective parameter is to changes in 
streamflow. The parameters were ranked with the most 
sensitive parameters depending on their t-stat index and p-
values being at the top (Table 3). The most sensitive 
parameters were found to be the Groundwater delays 
(GW_DELAY), Baseflow alpha factor (ALPHA_BF), 
curve number factor (CN2), the available soil water 
capacity (SOL-AWC), and plant uptake compensation 
factor (EPCO). 
 
Table 3. Main parameters used for sensitivity analysis and calibration of 
SWAT model. 

Parameter Name p-value t-stat 
GW_DELAY.gw 0.0000 -42.7879 
ALPHA_BF.gw 0.0000 6.6927 
CN2.mgt 0.0000 6.5606 
SOL_AWC.sol 0.0065 2.7318 
EPCO.bsn 0.0261 2.2321 
SOL_K.sol 0.1500 -1.4598 
SOL_BD.sol 0.1454 1.4584 
OV_N.hru 0.1598 1.4081 
GWQMN.gw 0.2990 -1.0398 
GW_REVAP.gw 0.8749 -0.1576 
ESCO.hru 0.8960 -0.1308 

 

To adequately consider a model validly calibrated, the 
parameter uncertainty ranges must be indicated (Table 4). 
There are three methods (parameter qualifiers) that can be 
used to make changes to the parameter values in SWAT: 
the parameter qualifier “R” which refers to a relative 
change of the specified parameter that increases or 
decreases the existing SWAT parameter value by 
multiplying it by (1 + fitted value) so as to obtain the new 
parameter value; the qualifier “V” refers to value change or 
replacement which  means that the initial SWAT parameter 
value is to be directly replaced by the fitted value; and the 
qualifier “A” which refers to addition and means that the 
fitted value is added to the initial SWAT parameter value.  
To ensure statistical optimization of precision, SWAT-
CUP suggested new values of intervals after each iteration 
(500 simulations) thus the calibrated values for each 
parameter can sometimes appear outside the initial existing 
intervals upon the completion of the five iterations. The 
model is considered calibrated once all the parameters and 
their respective uncertainties have been fitted in SWAT. 
 
Table 4. Parameter adjustment method and their uncertainty ranges. 

Parameter 
Name 

Qualifier 
Method 

Parameter Adjustment Values 
Min. 
value 

Max. 
value 

Fitted 
value 

CN2 R -0.083 0.106 -0.066 
ESCO R -0.039 0.054 0.033 
ALPHA_BF V -0.318 0.561 0.523 
GW_DELAY V 13.03 39.16 28.88 
GW_REVAP V 0.049 0.147 0.107 
GWQMN V 0.397 1.193 0.820 
SOL_AWC R -0.119 0.094 0.063 
SOL_K R -0.662 0.046 -0.620 
SOL_BD R -0.610 -0.203 -0.263 
OV_N R 0.050 0.151 0.120 
EPCO R -0.221 -0.074 -0.122 
R multiplies the existing value with (1+fitted value) i.e. relative change 
V replaces the existing value with the fitted value i.e. value change 
 
 
3.2. Simulation of Streamflow 
 

Trend analysis of the observed streamflow data using the 
changepoint (cpt) method in R (Killick and Eckley, 2014) 
indicated that there was a slight increase in the mean of the 
average monthly streamflow data around 2012 as shown in 
Fig. 3. This correspond to the same period when the 
implementation of irrigation in the lower reaches of the 
watershed was taking place. The overall mean of the entire 
dataset was 0.87 m3 s-1 whereas the means before and after 
the changes were 0.61 m3 s-1 and 1.26 m3 s-1 respectively. 
Similar results were obtained during the model simulation 
with average discharge of 0.70 m3 s-1 and 1.05 m3 s-1 during 
the calibration and validation periods respectively. This 
however did not affect the simulation process since the 
model was evaluated only on the rainfed upper reached of 
the watershed which aren’t influenced by irrigation. 

During the simulation process, comparison in the mean 
monthly flow for the calibration period was estimated at 
0.75 m3 s-1 against 0.70 m3 s-1 for the observed versus 
simulated data respectively, whereas the mean monthly 
flow during the validation period was estimated at 1.06 m3 
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s-1 against 1.05 m3 s-1 for the simulated versus observed 
data. The monthly streamflow was satisfactorily simulated 
in the calibration period and showed good agreement in the 
validation period. The model tended to underestimate most 
of the peak flows especially during the validation period 
despite simulating quite well the base flows. Previous 
studies have shown that SWAT model generally does not 
accurately predict most high flow events thus resulting to 
either their overestimation or underestimation (Meaurio et 
al., 2015; Rostamian et al., 2008; Tolson and Shoemaker, 
2004).

Fig 3. Changepoint analysis in the average monthly mean streamflow data 
at the Olite gauging station from 1990-2020.

Streamflow was calibrated and validated at a monthly 
time step using SUFI-2 in SWAT-CUP. The p-factor and r-
factor values were 0.73 and 0.81 respectively during the 
calibration period (Fig. 4) and 0.86 and 0.76 respectively 
during the validation period (Fig.5). Studies by Abbaspour 
(2015) and Abbaspour et al. (2018) suggested that a p-
factor value greater than 0.7 and r-factor values less than 
1.2 are considered satisfactory for streamflow calibration 
and validation. The p-factor represents the percentage of 
observed data bracketed within the 95PPU which accounts 
for all the uncertainties during the model calibration and 
validation processes.  The results for streamflow 
calibration in the Cidacos River are thus acceptable 
following the mentioned conditions. This implies that 
during calibration, 73% of the data were bracketed within 
the 95PPU which indicates a good model performance. 
Similarly, 86% of the data were bracketed within the 95 
PPU during the model validation. The lower value of p-
factor during calibration compared to the validation period 
could be attributed to the uncertainties in the input data 
such as precipitation data estimations for some stations 
within the watershed that were done to fill missing data 
gaps between 2000 to 2004, unlike the validation period 
that had a more consistent and accurate precipitation data. 
The r-factor represents the ratio of the average distance 
between the 95PPU band by the standard deviation of the 

observed data. The lower the r-factor values, the better the 
performance of the model during calibration and 
validation. The ideal condition should have a p-factor of 0 
and an r-factor of 1 which represents a simulation that 
directly corresponds to the observed data. However, 
extremely low p-values are not recommended as it could 
indicate that most of the uncertainties are not being 
accounted for. Fig. 4 and Fig. 5 show the simulated and 
observed hydrographs together with their uncertainty bands 
as well as the precipitation for the Cidacos River 
Watershed at the Olite gauging station.

Fig. 4. Calibration results for the observed and simulated streamflow for 
the Cidacos River at Olite gauging station from 2000-2010.

Fig. 5. Validation results for the observed and simulated streamflow for 
the Cidacos River at Olite gauging station from 2011-2020.

3.3. Model Performance Indicators

The statistical performance of the model during both 
calibration and validation were considered as good for 
streamflow prediction as represented in Table 5. The NSE 
and R2 values of 0.77 and 0.79 respectively during 
calibration period and 0.78 and 0.81 respectively during 
validation period were very satisfactory and indicated a 
very good model performance (Table 5). Similarly, PBIAS 
of -6.5 and 0.2 during calibration and validation periods 
respectively were quite satisfactory. The PBIAS value 
indicated the general tendency of the model to overestimate 
the flows by 6.5% during calibration and slightly 
underestimate the flows by 0.2% during validation which 
reflects a ‘very good’ fit. The RSR value of 0.48 and 0.46 
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for calibration and validation respectively were also 
satisfactory as they were below the recommended 
threshold of 0.7 and thus indicating a good model 
performance. Following the results from the four statistical 
performance indicators, the model can thus be considered 
to be very good and satisfactory to simulate monthly 
streamflow for the Cidacos River. Better values were 
attained during the validation period as compared to the 
calibration period. This could be as a result of better input 
data such as rainfall and land use during the validation 
period. The validation period had fewer missing rainfall 
gaps and had the recent land use map of 2019 that was 
used in the model unlike the calibration period that 
exhibited a lot of meteorological data inconsistencies 
before 2004 especially for the automatic stations as most of 
them were only operational after March 2004. 
 
Table 5. Model performance indicators in calibration and validation. 
Performance 
indicator 

Threshold Calibration Validation Model 
Performance 

NSE > 0.5 0.77 0.78 Satisfactory 
R2 > 0.5 0.79 0.81 Satisfactory 
PBIAS ±25% -6.5% 0.20% Satisfactory 
RSR ≤ 0.7 0.48 0.46 Satisfactory 

 
 
4.- Conclusion 
 

In this study, the SWAT model was used to simulate 
streamflow in the Cidacos River from 1990-2020 at a 
monthly timestep. The initial first 10 years were used as 
warm-up period whereas calibration and validation period 
were carried between 2000-2010 and 2011-2020 
respectively. The most sensitive parameters during 
streamflow calibration were Groundwater delays 
(GW_DELAY), Baseflow alpha factor (ALPHA_BF), 
curve number factor (CN2), the available soil water 
capacity (SOL-AWC), and plant uptake compensation 
factor (EPCO). The results showed that the model was 
capable of identifying the uncertainties in the hydrological 
processes using the p-factor and provided their uncertainty 
range (95PPU). Statistical indices indicated that the SWAT 
model provided satisfactory model performance and good 
agreement for streamflow simulation with the observed 
data with NSE and R2 values of 0.77 and 0.79 during 
calibration and 0.78 and 0.81 during the validation period 
respectively. It can thus be concluded that the SWAT 
model could be considered as an appropriate tool capable 
of evaluating streamflow in the Cidacos River Watershed 
adequately. The outcome from this study could be used to 
predict future hydrological impacts due to agricultural land 
use changes such as transformation from rainfed to 
irrigated agriculture. 
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