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RESUMEN. El método del estado adjunto (AS) es 
comúnmente utilizado para calcular las derivadas 
locales de la función objetivo del problema inverso de 
la estimación automática de los parámetros de modelos 
numéricos de flujo y transporte de solutos y para 
calcular las sensibilidades de los resultados de los 
modelos a variaciones de sus parámetros. El método 
AS se puede aplicar: (a) Al problema original (método 
continuo) o (b) A la versión discretizada del problema 
original (método discreto). El método AS continuo 
consiste en obtener las ecuaciones del estado adjunto a 
partir de las ecuaciones en derivadas parciales del 
problema original y, posteriormente, resolver 
numéricamente dichas ecuaciones. El método AS 
discreto consiste en obtener las ecuaciones del estado 
adjunto directamente a partir de las ecuaciones 
discretizadas del problema original. Este trabajo presenta 
la formulación del estado adjunto continuo y discreto 
para el transporte de solutos conservativos y reactivos en 
medios porosos. Se incluye la descripción de los dos 
métodos, el análisis de sus propiedades y la comparación 
de ambas versiones así como su aplicación a sistemas 
multicomponente de solutos conservativos y sistemas 
reactivos con reacciones de disolución/precipitación de 
minerales y de intercambio catiónico.  

ABSTRACT. The adjoint state (AS) method is 
commonly used for calculating local derivatives of 
objective functions in the solution of the inverse problem 
of parameter estimation and computing model 
sensitivities for water flow and solute transport. The AS 
method can be applied to: (a) The continuous version of 
the original problem (continuous AS method) and (b) 
The discretized form of the original problem (discrete AS 
method). The continuous AS method consists on deriving 
the AS equations from the partial differential equations 
(PDEs) of the original problem and then solving 
numerically the resulting PDEs of the AS. The discrete 
adjoint state method consists on obtaining the discretized 
AS equations directly from the discretized equations of 
the original problem. Here we present the formulation of 
both the continuous and discrete AS for conservative 
solute transport in porous media. The methods are 
described and the properties of both continuous and 
discrete AS formulations are analysed and compared. We 
also present the AS equations for multicomponent 
reactive systems with mineral dissolution/precipitation 
and cation exchange reactions.   
 

 
 
1.- Introduction 

 
The adjoint state (AS) method is commonly used for 

calculating the gradient of the objective function in the 
solution of the inverse problem of parameter estimation 
(Carrera and Neuman, 1986; Samper and Neuman, 1986, 
1989). Evaluating the adjoint state requires a single 
calculation similar to that of the original problem, 
regardless the number of parameters, and the method can 
be applied to the continuous version of the original 
problem or to the discretized form. Most of the reported 
applications rely upon discrete approaches.  

A comparison of the continuous and discrete adjoint 
states for solving the inverse problem of groundwater 
flow in heterogeneous dual porosity systems is presented 
by Delay et al. (2017). They reported that both discrete 
and continuous AS led to similar results when 
sufficiently refined grids are used. 

The AS method has been applied recently to model the 
steady state sequentially coupled radionuclide transport 
in porous media (Hayek et al., 2019, 2020). To the best 
of our knowledge, the AS method has not been applied 
yet for modelling reactive solute transport. 

We present first the mathematical and numerical 
formulation of conservative solute transport for a single 
species. Then, the continuous and discrete adjoint state 
equations are described. Afterwards, a comparison of the 
continuous and discrete adjoint state methods are 
presented. Section 6 presents the AS equations for 
multicomponent solute transport. AS equations of 
multicomponent reactive transport systems are described 
in Sections 7 and 8. 

 
 

2.- Formulation of conservative solute transport 
 
2.1. Solute transport equation and boundary conditions 
 

The partial differential equation (PDE) of conservative 
solute transport is given by: 

 

 
(13) 

 
where  is porosity,  is the dispersion/diffusion tensor, 
 is the solute concentration,  is the solute 

concentration gradient,  is the Darcy velocity,  and  
are water source/sink terms, respectively,  is the 
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concentration of the water inflow,  is the decay 
constant,  is the solute mass source term,  R is the space 
domain,  is time and T is the time domain (see the list of 
terms in Appendix E). The Darcy velocity is given by 
Darcy’s law: 
 

 (14) 
 
where  is the hydraulic conductivity tensor and  is 
the gradient of the hydraulic head. The boundary and 
initial conditions of the solute transport in Eq. (1) are 
given by: 
 

 (15) 

  

 (16) 

  
 (17) 

 
where 1 denotes the inflow and no-flow boundaries, 2 
denotes the outflow boundaries,  is a unit vector normal 
to the boundary pointing outwards,  is the external 
concentration along the boundary,  is the prescribed 
solute mass flux along the boundary,  is a parameter 
controlling the type of solute transport boundary and  is 
the steady-state concentration. 
 
2.2. Finite element numerical formulation 
 

 The numerical solution of Eqs. (1)-(5) with the finite 
element method (FEM) is based on the following 
approximation: 
 

 (18) 

 
where N is the total number of nodes in the grid, is the 
nodal solute concentration and  is the -th basis 
function used for the spatial interpolation. Using the 
Galerkin finite element method for space discretization 
and the finite differences method for time discretization, 
the resulting finite element equations for solute transport 
are given by: 
 

 
(19) 

 
where  is a N x N conductance matrix,  is a N x N 
storage matrix,  is a time discretization parameter 
which takes values between 0 and 1,  is the vector of 
nodal concentrations at time ,  and  
is the total number of time intervals where concentrations 
are calculated, so that  The expressions of 
matrices  and  and the vector  are given by: 
 

 

(20) 

 

 (21) 

 

 

(22) 

 
2.3. Objective function 
 

Solving the inverse problem of solute transport requires 
to minimize an objective function, . The integral form 
of the objective function has the following expression: 
 

 (23) 

 
where  are known functions and  is a vector of 
model parameters. The parameters for conservative 
solute transport include  and 
G. 

The discrete form of the objective function is given by: 
 

 (24) 
 

In order to minimize , its gradient can be obtained in 
terms of the adjoint state variables, which in turn are 
obtained from the original problem. The AS equations 
can be derived from the continuous and discretized 
versions of the original problem. 
 
 
3.- Continuous adjoint state  

 
The continuous adjoint state method consists on 

deriving the AS equations form the PDEs of the original 
problem and then solving numerically the resulting PDEs 
of the AS. The continuous adjoint state method involves 
the following steps: 

 Define the adjoint state variable for solute 
concentration, . The model parameters  are 
collected in a vector . 

 Define the objective function in terms of the 
variables and model parameters, such as that in 
Eq. (11).  

 Take derivatives of the solute transport PDEs 
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and associated initial and boundary conditions in 
Eqs. (1)-(5) with respect to parameter . The 
derivatives are denoted with a superscript  , i.e., 

 denotes the derivative of r with respect to . 
 Multiply the resulting derivative equations by 

the adjoint state  and integrate in RxT. 
 Apply Green’s first identity and divergence 

theorem to substitute the divergence terms by 
lower-order derivatives. The resulting boundary 
integrals are evaluated by their respective 
boundary equations obtained after steps 3 and 4. 

 Eliminate the terms involving  by applying 
Green’s first identity and divergence theorem. 

 Lump together in  all the terms containing 
derivatives of solute concentration with respect 
to the parameter  . The rest of the terms are 
lumped into a term denoted . The resulting 
expression is given by: 

 
 (25) 

 
 Take derivatives of the objective function  

with respect to   and add it to Eq. (13). The 
gradient of the objective function becomes: 

 

 (26) 

 
where F and  have the following expressions: 

 

 (27) 

 

 (28) 

 
 Select  so that  cancels out. This leads to a 

PDE for the adjoint state variable, , with its 
corresponding final and boundary conditions. 

 Derive the expressions of the derivatives of the 
objective function with respect to model 
parameters, which involve the original and the 
adjoint state variables.  

 
The PDE of the transient adjoint state variable and its 

associated “final” and boundary conditions are given by: 
 

  in RxT 
(29) 

 
   in 1 x T (30) 

 
  in 2 x T (31) 

 
  in R (32) 

 

where  is the final time. The expressions of  for 
selected parameters are listed in Appendix A. 

Numerical methods are used to solve the adjoint PDE. 
By using discretization methods similar to those of the 
original problem (Galerkin finite elements for spatial 
discretization and finite differences for time 
discretization), the finite element equations of the adjoint 
state variable are given by: 
 

 
(33) 

 
where  is the N x N conductance matrix,  is the N x N 
symmetric storage matrix,  is a time discretization 
parameter (0 < < 1),  is the vector of nodal adjoint 
state concentrations at time and K is the total number 
of time intervals where concentrations are calculated. 
Matrices   and  are the same matrices defined in the 
original problem in Eqs.(8) and (9) and vector  is given 
by: 
 

 (34) 

 
The analysis of the continuous version of the adjoint 

state equations indicates that the adjoint state  satisfies a 
PDE similar to that of c. However, the “adjoint solute” 
corresponding to  moves upstream, unlike the solute 
with concentration . Therefore,  must be solved 
backwards in time from the final to the initial time. 
Furthermore, the PDE of the adjoint state is intrinsically 
linear, unlike the equations of the original problem which 
may be non-linear for non-linear chemical sinks and 
sources.  
 
 
4.- Discrete adjoint state  
 

The discrete adjoint state method consists on obtaining 
the finite element equations of the adjoint states directly 
from the discretized equations of the original problem. 
The discrete method involves the following steps: 

 
 Define the adjoint state vector  (

) of nodal concentrations at time .  
 Define the objective function in terms of model 

parameters and outputs. 
 Take derivatives of the discretized equations of 

the original problem, Eq. (7), with respect to the 
parameter .  

 Premultiply the equations by the transposed 
adjoint state vector  and sum for all the  
time intervals.   

 Lump together all the terms in the left-hand side 
and add them to the derivative of the objective 
function. 

The finite element equations of the discrete adjoint 
state are given by: 
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(35) 

 
where the matrices and  are the same matrices defined 
in the original problem and vector  is given by: 
 

 (36) 

 
The resulting general expression of the derivative of the 

objective function becomes: 
 

 

 

 

(37) 

 
 
5.- Comparison of the continuous and discrete adjoint 
methods for solute transport  
 

The discrete and continuous adjoint state methods lead 
to linear equations. Moreover, in both cases the adjoint 
state equations must be solved backwards in time, 
starting at the final conditions where  

Although the discrete and continuous adjoint state 
methods lead in general to different algebraic equations, 
their solutions are consistent because both methods 
reflect different ways of discretizing the same partial 
differential equations. The continuous method is versatile 
because it allows using a numerical method and a 
discretization scheme for the adjoint states independent 
of those of the forward problem.   
The discrete AS method must be developed and coded 
specifically for the code of the forward problem. 
Therefore, it is an intrusive method. The discrete AS 
method offers the advantage of ensuring a numerical 
accuracy of adjoint state similar to that of the forward 
problem. 
 
 
6.- Multicomponent conservative transport  
 

Here we present the continuous AS equations for 
conservative transport of N species. The mathematical 
formulation of the original problem for N species is 
given by the following PDEs, boundary and initial 
conditions: 
 

 (38) 

 
 (39) 

 
 (40) 

 
where the variables and parameters are those already 
presented in Section 2. For the i-th species,  is a 
transport operator given by: 
 

 (41) 
 

The objective function in this case is given in terms 
of the N solute concentrations  and the model 
parameters: 
 

 (42) 

 
The adjoint state variables τ associated to the original 

problem are collected in a column vector of N 
components, , which satisfy the following equations: 
  

 (43) 

 
 (44) 

 
 (45) 

 
The expressions of the derivative of the objective 

function for selected parameters are listed in Appendix 
B. 

Eqs. (31)-(33) show that adjoint states  satisfy 
similar equations as in the original problem, with an extra 
source term which depends on the derivatives of the 
objective function. Moreover, the AS equations must be 
solved backwards in time.  
 
 
7.- Reactive system with kinetically-controlled 
minerals  
 

This section presents the continuous AS equations 
for reactive solute transport involving N primary 
aqueous species and Np kinetically-controlled mineral 
phases with precipitation/dissolution rates rp. The 
mathematical formulation of the original problem is 
given by:  
 

 (46) 

 
 (47) 

 
 (48) 

 
where  is the vector of N primary species concentrations 
and  is a NxNp rectangular matrix of stoichiometric 
coefficients given by:  
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 (49) 

 
   is a column vector of Np precipitation/dissolution 
kinetic rates given by: 
 

 (50) 

 
where  is the stoichiometric coefficient of the j-th 
primary species involved in the chemical reaction of 
the i-th mineral phase. The terms  refers to the 
kinetic rate of the i-th mineral phase, which in general 
depends on the concentrations of the primary species.  

The term  in Eq. (34) is a sink/source term of the 
concentrations of primary species associated to the 
kinetic precipitation/dissolution of the mineral phases 
with concentrations : 
 

 (51) 

 
The objective function in this case is given in terms 

of the N primary species concentrations  and the 
model parameters : 
 

 (52) 

 
The adjoint states associated to the original problem are 

defined by the column vector of N components, .  The 
adjoint state equations for a reactive system with Np 
kinetically-controlled mineral phases are given by: 
 

  (53) 
 

 (54) 
 

 (55) 
 
where  is a NpxN matrix associated to the first-order 
derivatives of the precipitation/dissolution kinetic 
rates with respect to the primary species 
concentrations: 
 

 (56) 

 
The expressions of the derivatives of the objective 

function for selected parameters are listed in Appendix 
C. 

Eqs. (41)-(43) show that adjoint states  of a reactive 
system with kinetically-controlled mineral phases satisfy 
similar equations as those of the original problem, with 
additional sink/source terms which depend on the 
derivatives of the objective function. Moreover, there is a 
source term in  which is associated to the chemical 
reactions. It should be noticed that contrary to the PDE’s 
of the original problem which in general are nonlinear, 
the PDE’s of the adjoint state variables are linear.  
 
 
8.- Reactive system with cation exchange reactions  
 

This section presents the continuous AS equations 
for multicomponent cation exchange reactive 
transport. The solute transport PDEs for a set of 
exchanging cations is given by: 
 

 (57) 

 

 (58) 

 
where  is the column vector of N-1 concentrations of 
dissolved cation,  is the column vector of (N-1) 
equivalent fractions of the exchanged cations,  is a (N-
1)x(N-1) diagonal matrix of entries , where  is the 
charge of the i-th cation,  is the dissolved 
concentration of the reference cation (usually Na+) ,  is 
the equivalent fraction of the reference cation and  is a 
constant given by: 
 

 (59) 

 
where CEC is the cation exchange capacity (meq/100g) 
and  is bulk density. Initial and boundary conditions 
are given by: 
 

 (60) 
 

 (61) 
 

Cation exchange reactions take place when dissolved 
cations exchange with cations at the interlayer positions. 
These reactions can be assumed to take place at chemical 
equilibrium. According to the Gaines-Thomas 
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convention, the mass-action-law of cation exchange 
reactions is given by the following expression in terms of 
equivalent fractions : 
 

 (62) 

 
where  is the exchange or selectivity coefficient. By 
definition, equivalent fractions add to one: 
 

 (63) 

 
Exchange reactions are usually expressed in terms of a 

reference cation. Considering N as the reference cation, 
Eq. (50) becomes: 
 

 (64) 

 
Using matrix notation and taking logarithms in Eq. (52) 

leads to: 
 

 (65) 
 

 (66) 
 

Eqs. (45), (46), (53), (54) and initial and boundary 
conditions in Eqs. (48), (49) define the mathematical 
formulation of cation exchange reactive transport for 
deriving the adjoint state equations. By following the 
steps of the continuous AS method, the adjoint states 
associated to the original problem are defined in Table 1. 
The objective function in terms of the variables and 
model parameters is given by: 

 

 (67) 

 
Table 1. Adjoint states of a reactive system with cation exchange 
reactions. 

Equations of he 
original problem  

Associated  
adjoint states  

Vector  
dimensions 

Eq. (45)  (N-1) x 1 
column vector 

Eq. (46)  Scalar 

Eq. (53)  (N-1) x 1 
column vector 

Eq. (54)  Scalar 

 
Once the AS method is applied, the adjoint state 

equations for a reactive system with cation exchange 
involving N cations are given by: 
 

 (68) 

 

 (69) 

 

 (70) 

 

 (71) 

 
where  are (N-1)x(N-1) diagonal matrices with 
entries  and . 
  

The system of equations (56)-(59) can be simplified by 
elimination. The resulting adjoint state equations are 
given by: 
 

 
(72) 

 

 (73) 

 
where the superscript * indicates that vectors and 
matrices are N dimensional. Matrices  and  and 
vector are given by: 
 

 (74) 

 

 (75) 

 

 (76) 

 
where  is the (N-1)x(N-1) identity matrix, is a 
diagonal matrix with entries   and 

 are given by: 
 

 (77) 

 
 
 
 



Estudios en la Zona No Saturada. Vol. XV 

 243 

 

 

(78) 

 
The adjoint states in Eq. (61) satisfy a linear system 

of PDE`s which can be solved once the variables of the 
original problem are known. Once   are known, then  
is calculated according to Eq. (60) and finally   is 
compuyed according to Eq. (57). It should be noticed that 
contrary to the PDE’s of the original problem which are 
highly nonlinear, the PDE’s of the adjoint state variables 
are linear.  

The expressions of the derivatives of the objective 
function for selected parameters are listed in Appendix 
D. 
 
 
9.- Conclusions  
 
  We have presented the formulation of both the 
continuous and discrete AS method for conservative and 
reactive solute transport in porous media. The properties 
of the continuous and discrete AS formulations have 
been analysed and compared. The formulation has been 
extended to multicomponent solute transport systems 
involving: 1) Purely conservative species; 2) Reactive 
species participating in kinetic mineral 
dissolution/precipitation reactions; and 3) Reactive 
species participating in cation exchange reactions. 
Contrary to the PDE’s of multicomponent reactive solute 
transport for mineral phases and cation exchange 
reactions, which are highly nonlinear, the PDE’s of the 
adjoint state variables are always linear. 
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Appendix A 
 

This appendix presents the expressions of the 
derivatives of the objective function with respect to some 
parameters for the continuous AS method. The 
parameters are the porosity , the dispersion/diffusion 
tensor D and the boundary parameters , G and C.  
 

 

(A1) 

 

 (A2) 

 

 
(A3) 

 

 (A4) 

 

 
(A5) 

 
where  denotes the tensorial product. 
 
 
Appendix B 
 

This appendix lists the expressions of the derivatives of 
the objective function for the continuous AS method of a 
multicomponent conservative solute transport system. 
The derivatives, which correspond to the porosity , the 
dispersion/diffusion tensor , the solute mass source 
term  and the boundary parameters , Gi and Ci, are 
given by:  
 

 (B1) 
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(B2) 

 

 (B3) 

 

 
(B4) 

 

 (B5) 

 

 (B6) 

 
 
Appendix C 
 

This appendix lists the expressions of the derivatives of 
the objective function for the continuous AS method of a 
reactive system with Np kinetically-controlled mineral 
phases. The derivatives correspond to porosity  and the 
dispersion tensor  and are given by:  
 

 

 

 

(C1) 

 

 

(C2) 

 
 
Appendix D 
 

This appendix lists the expressions of the derivatives of 
the objective function for the continuous AS method of a 
reactive system with cation exchange reactions. The 

derivatives correspond to porosity , dispersion tensor 
, cation exchange capacity, CEC, and exchange 

coefficient KNj and are given by:  
 

 

(D1) 

 

 

 

 

 

(D2) 

 

 

(D3) 

 

 (D4) 

 
where  is given by: 
 

 (D5) 

 
 
Appendix E 
 
Table E1. List of terms (variables and parameters). 

 Variable / Parameter 

 Vector of equivalent fractions of the exchange cations 

 Parameter controlling the type of boundary condition 

 Equivalent fraction of the reference cation 

 Boundary of the spatial domain 
 Vector of model parameters 

 Length of time intervals in finite element numerical formulation 

 Gradient operator 

 Divergence operator 

 Adjoint states associated to mass-action-law of cation exchange  

1 Time discretization parameter 
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 Decay constant 
 Basis functions in finite element numerical formulation 

 Bulk density 

 Independent term in the discrete adjoint state equations 

 
Adjoint sate associated to equivalent fractions in cation 
exchange  

 Adjoint states associated to transport PDEs 

 
Adjoint sate associated to reference transport PDEs of the 
reference cation in cation exchange 

  
Stoichiometric coefficient of the species c involved in 
precipitation/dissolution of mineral p 

 Porosity 

 Objective function 

C External concentration along the boundary 

c(x,t) Solute concentration 

CEC Cation exchange capacity 

D Dispersion/diffusion tensor 

 Storage matrix in the finite element numerical formulation 

 Conductance matrix in the finite element numerical formulation 

G Prescribed solute mass flux along the boundary 

g Solute mass source 

 Hydraulic head 

K Hydraulic conductivity 

 Exchange coefficient or selectivity coefficient 

L( ) Solute transport operator 

n Unit vector normal to the boundary 

q Darcy’s velocity 

R Space domain 

 
Matrix of first derivatives of the precipitation/dissolution rates 
with respect to primary species’ concentrations 

 
Independent term in the finite element numerical formulation of 
the original problem 

 Independent term in the continuous AS discretized equations 
 Vector of precipitation/dissolution rates 

 
Matrix of stoichiometric coefficients in 
precipitation/dissolution reactions 

T Time domain  
 Final time 

zi Charges of the exchange cations 

zN Charge of the reference cation 

 

 
 


