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ABSTRACT. This study proposes a two step model 
evaluation framework using global techniques: 1) a 
screening method (Morris method) for qualitative ranking 
of parameters and 2) a variance-based method (Extended 
Fourier Analysis Sensitivity Test – Extended FAST) for 
quantitative sensitivity and uncertainty analyses. 

The techniques are applied to VFSMOD-W, a model used 
for designing vegetative filter strips. Regional 
characteristics of phosphate-mining region of central 
Florida along the Peace River basin, were used to construct 
the probability distributions of input factors. Two design 
filter lengths (3 and 6 m) and two alternative model 
structures were evaluated. The results clearly illustrate four 
possible products of the global sensitivity analysis: 
evaluation of the model’s behavior, ranking of importance 
of the parameters for different outputs, effect of changing 
modeling structure, and type of influence of the important 
parameters (first order or interactions). 
 
RESUMEN. Este estudio propone un marco para la 
evaluación de la sensibilidad basado en el uso de dos 
técnicas globales: un método cualitativo y rápido para 
prospección (Método de Morris), y un método cuantitativo 
basado en el análisis de varianza de la salida del modelo 
(FAST, Test de Análisis de Sensibilidad de Fourier). El 
método rápido permite la identificación de un número 
reducido de los parámetros de entrada en base a su 
importancia relativa (sensibilidad del modelo) para el 
posterior análisis de sensibilidad e incertidumbre del 
modelo mediante FAST. Se presentan algunas aplicaciones 
de estas técnicas al modelo (VFSMOD-W) usado como 
herramienta para el diseño de filtros vegetales. Los valores 
de campo medidos en la zona y otras características locales 
conocidas fueron utilizados para la construcción de 
funciones de probabilidad para todas las entradas inciertas 
del modelo. Se evaluaron dos longitudes de diseño para 
filtros vegetales propuestas para la zona (3 y 6 m) y dos 
estructuras alternativas del modelo VFSMOD-W. Los 
resultados ilustran claramente cuatro de los productos del 
análisis global: control de calidad del modelo, importancia 
relativa de los parámetros de entrada en base a la 
sensibilidad del modelo, efecto del cambio de estructura del 
modelo, y tipo e influencia de los parámetros importantes .  
 
 

1.- Introduction 
 

Water quality models provide an alternative to field 
monitoring that potentially can save time, reduce cost, and 
minimize the need for testing management alternatives; 
however, the uncertainty of the model results is often a 
major concern (Shirmohammadi et al., 2006). Mathematical 
models are built in the presence of uncertainties of various 
types (parameter input variability, model algorithms or 
structure, model calibration data, scale, model boundary 
conditions, etc.) (Haan, 1989; Beven, 1989; Luis and 
McLaughlin, 1992). In a broad sense all these sources of 
uncertainty that can affect the variability of the model 
output have been refereed to as “input factors”. The role of 
the sensitivity analysis is to determine the strength of the 
relation between a given uncertain input factor and the 
model outputs. The role of the uncertainty analysis is to 
propagate uncertainties in input factors onto the model 
outputs of interest (Saltelli et al., 2004). Since hydrological 
and water quality models are often complex and contain a 
large number of input factors, the evaluation of model 
sensitivity and uncertainty must be an essential part of the 
modeling process (Haan, 1989, 2002; Reckhow, 1994; 
Beven, 2006). If model uncertainty is not evaluated 
formally, the science and value of the model will be 
undermined (Beven, 2006). The issue of uncertainty of 
model outputs has policy, regulatory, and management 
implications, but understanding the source and magnitude 
of uncertainty and its effect on water-quality assessment 
has not been studied comprehensively (Beven, 2006; 
Muñoz-Carpena et al., 2006; Shirmohammadi et al., 2006).  

The formal application of sensitivity and uncertainty 
analyses allows the modeler to: a) examine model 
behaviour; b) simplify the model; c) identify important 
input factors and interactions to guide the calibration of the 
model; d) identify input data or parameters that should be 
measured or estimated more accurately to reduce the 
uncertainty of the model outputs; e) identify optimal 
locations where additional data should be measured to 
reduce the uncertainty of the model; and f) quantify the 
uncertainty of the modeling results (Saltelli et al. 2005). 
However, in spite of advantages, these analyses are 
frequently ignored in water quality modeling efforts today 
(Beven, 2006; Shirmohammadi et al., 2006). 

Traditionally, model sensitivity has been expressed 
mathematically as derivatives of the model output with 
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respect to the input variation, sometimes normalized by 
either the central values where the derivative is calculated 
or by the standard deviations of the input and output values 
(Haan, 1995). These sensitivity measurements are "local" 
because they are fixed to a point (base value) or narrow 
range where the derivative is taken. These local sensitivity 
indexes, used in "one-parameter-at-a-time" (OAT) methods, 
quantify the effect of a single parameter Xi, by assuming all 
others are fixed (Saltelli et al., 2005). Local sensitivities are 
used widely in hydrologic modeling (Haan, 1995) and are 
the basis of many applications, such as the solution of 
inverse problems (Cacuci, 2003). However they are only 
fully informative if all factors in a model produce linear 
output responses, or if some sort of average can be used 
over the parametric space. Often models are non-linear and 
alternative "global" sensitivity approaches, where the entire 
parametric space of the model is explored simultaneously 
for all input factors, is more appropriate.  

In addition, most global techniques, unlike OAT methods, 
provide information not only about the direct (first order) 
effect of the individual factors over the output, but also 
about their interaction (higher order) effects. Different 
types of global sensitivity methods can be selected based of 
the objective of the analysis (Saltelli et al., 2000, 2004, 
2005). 

Recently, Saltelli et al. (2004, 2005) proposed that a 
desirable statistical framework for model evaluation should 
be based on a set of global analyses techniques that meet 
the following requirements: a) are model-independent so 
they can be used with any model without modification; b) 
contain a screening method to efficiently identify the subset 
of important inputs controlling the output variability; c) 
contain a method that based on the reduced set of sensitive 
inputs can provide a quantitative decomposition of the 
output variance in term not only of first order but also 
higher order effects of the input factors; and d) allows for 
uncertainty analysis of the model based on the construction 
of PDFs using outputs derived from the variance-based 
method.  

A framework meeting the above objectives is applied for 
VFSMOD-W in two steps: 1) screening by the method of 
Morris (1991) is applied. This method provides, with a 
comparatively small number of simulations, a qualitative 
ranking of input factors in terms of their relative effect over 
the model output; 2), if quantitative sensitivity information 
is desired, a variance-based technique (like Extended 
FAST) is performed at the expense of a larger number of 
simulations. The above methodology can be applied to a 
wide spectrum of models and applications and is especially 
efficient for computationally expensive models, or if a large 
number of parameters need to be evaluated simultaneously.  

The consideration of model sensitivity and uncertainty 
should be linked to the availablity or efficient collection of 
data. Ideally, uncertainty is quantified by probability 
distribution functions (PDFs) of the model outputs (Haan, 
1989, 2002; Haan et al., 1995; Shirmohammadi et al., 
2006). These PDFs can be used for decision by placing 
confidence levels on the outputs, usually in the form of a 
margin of safety (MOS) component, or by calculating a 

probability of exceedance of a maximum allowed value. An 
extensive review of uncertainty analysis methods applied to 
environmental models can be found in Morgan and Henrion 
(1992), Haan (2002) and Shirmohammadi et al., (2006). 
 
 
2.- Sensitivity and Uncertainty methods and Application 
 
 
2.1. Global Sensitivity and Uncertainty Analyses 
Techniques: Morris and Extended FAST 
 
 
2.1.1. Screening Method: The Method of Morris  

 
Parameter-screening methods (Saltelli et al. 2005) are 

designed to determine, in terms of model output, which of 
the model factors can be considered (1) negligible, (2) 
linear and additive, or (3) either non-linear or involved in 
interactions with other parameters. The screening method 
proposed by Morris (1991), (hereafter "Morris method" or 
"Morris") and later modified by Campolongo et al. (2005), 
was used here because it is relatively easy to implement, 
requires very few simulations, and interpreting its results is 
straightforward (Saltelli et al. 2005).  

Morris (1991) proposed conducting individual randomized 
experiments that evaluate the effects of changing one 
parameter at a time. Each input may assume a discrete set 
of equispaced values, called levels, from an allocated range 
of variation for the factor. The elementary effect (di(x), 
local derivative of output in respect to input) for factor Xi is 
defined as: 
 

di (x) = [y(x1,...,xi-1,xi + Δ, xi+1,xk) – y(x)] / Δ (1) 
 
where xi+Δ - perturbed value of xi, i = 1,…, k; , k – number 
of factors, 

The principle of Morris method is to calculate the 
elementary effects, for values sampled at each level of 
factor Xi. The resulting elementary effects of factor Xi are 
characterized by their mean and standard deviation.  

For each parameter, two sensitivity measures are proposed 
by Morris (1991): (1) the mean of the elementary effects, μ, 
which estimates the overall effect of the parameter on a 
given output; and (2) the standard deviation of the effects, 
σ, which estimates the higher-order characteristics of the 
parameter (such as curvatures and interactions). Since 
sometimes the model output is non-monotonic, 
Campolongo et al. (2005) suggested considering the 
distribution of absolute values of the elementary effects, μ∗, 
to avoid the canceling of effects of opposing signs, and 
thus, μ* and σ were adopted as global sensitivity indexes in 
this method. The number of simulations (N) to perform in 
the analysis results as: 
 

N = r (k + 1) (2) 
 
where r - sampling size r for search trajectory (r = 10 
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produces satisfactory results), k - number of factors. 
Although elementary effects are local measures, the 

method, is considered global, as the final measure μ* is 
obtained by averaging the elementary effects which 
eliminates the need to consider the specific points at which 
they are computed (Saltelli et al., 2005). 
To interpret the results in a manner that simultaneously 
accounts for the mean and standard deviation sensitivity 
measures, Morris (1991) suggested plotting the points on a 
μ-σ Cartesian plane. Morris (1991) recommended applying 
μ (or μ* thereof) to rank parameters in order of importance. 
Saltelli et al. (2004) suggested applying the original Morris 
(1991) measure, σ, when examining the effects due to 
interactions. The meaning of σ can be interpreted as 
follows: if its value is high for a parameter, Xi, the 
elementary effects relative to this parameter are sensitive to 
the chosen values of other parameters that constitute the 
remainder of the input space. Because the Morris method is 
qualitative in nature, it should only be used to assess the 
relative parameter ranking 

 
 

2.1.2. Variance-based Method: Extended Fourier 
Amplitude Sensitivity Test (FAST) and Uncertainty 
Analysis. 
 

When a quantitative measure of sensitivity is to be 
obtained a variance-based method like the Fourier 
Amplitude Sensitivity Test (FAST) can be used (Cukier et 
al. 1973, 1978; Koda et al. 1979). Cukier et al. (1978) 
proposed that for independent factors, the total output 
variance can be expressed as: 
 

( ) k
ji lji

ijlij
i

i VVVVYV ...123... ++++= ∑ ∑∑
< <<

  (3) 

 
where multiple combinations of subindeces (ij, ijl, … 
,123…k) represent interactions of the factors. 

Although FAST was originally developed to estimate the 
first-order effects of orthogonal inputs on a given model 
output, it has been extended to incorporate calculation of 
the total-order effects by Saltelli et al. (1999).  

FAST decomposes the total variance (V=σY
2) of the model 

output, Y = f (X1,X2,…,Xk), using spectral analysis so that: 
 

V = V1 + V2 +V3 + … + Vk + R  (4) 
 
where Vi is the part of the variance that can be attributed to 
the input factor Xi alone, k is the number of uncertain 
factors, and R is a residual. The fraction of the total output 
variance attributed to a single factor can then be taken as a 
measure of global sensitivity of Y with respect to Xi, i.e. the 
first order sensitivity index Si, as 
 

Si = Vi / V (5) 
 

It is standard practice to assume that all parameters are 
uniformly distributed in [0,1] (Saltelli et al. 2004 and 

2005), thereby permitting all parameters to be mapped from 
the unit hypercube to their actual distribution. To calculate 
Si, the FAST technique randomly samples the k-
dimensional space of the input parameters using the 
replicated Latin hypercube sampling (r-LHS) design 
(McKay et al., 1979, McKay 1995). The number of 
evaluations required in the analysis can be expressed as, 
 

N = M (k + 2) (6) 
 
where M is a number between 500∼1000. 

Higher-order interaction terms in equation (3) correspond 
to the residual R contained in equation (4). Therefore, the 
sum of all Si is the fraction of total variance attributed to the 
sum of all the first-order effects. For a perfectly additive 
model, ΣSi = 1; that is, no interactions are present and total 
output variance is explained as a summation of the 
individual variances introduced by varying each parameter 
alone. In general, models are not perfectly additive and 
ΣSi < 1. 

Extended FAST (Saltelli et al., 1999) allows for the 
determination of the higher order terms, which indicate the 
degree of parameter interaction. Another index, STi, (total 
sensitivity index for Xi) is calculated as the sum of the first 
order index and all higher order interaction-indices of a 
given parameter. For example, for parameter number 1: 

 
ST1 = S1 + S1i + S1jk, +…+ S1…n   and then 

 
ST1 - S1 = S1i + S1jk, +…+ S1…n (7) 

 
For a given parameter, Xi, interactions can be isolated by 

calculating STi - Si , which makes the extended FAST a 
powerful method for quantifying the individual effect of 
each parameter alone (Si ) or through interaction with others 
(STi - Si). If individual quantification of the higher order 
interaction groups is desired Saltelli (2004) proposes the 
use of the method of Sobol (1990), although, since it is 
based on Monte-Carlo sampling, it typically requires a 
larger number of simulations than the Extended FAST. 

An additional benefit of the Extended FAST analysis is 
that the results can be used for the uncertainty evaluation by 
constructing cumulative probability functions (CDFs) for 
each of the selected outputs. 

It should be noted that the results of any model evaluation 
are specific to the particular application of the model. 
A “worst case scenario” where all the potentially sensitive 
model parameters are allowed to vary across their total 
(potential) parametric space could be implemented, in 
particular applications. It is important, however, that the 
user restricts the potential variation range or fixes some 
parameters, based on local field data or other information 
available. This practice can substantially change the 
uncertainty predictions, especially if the model is sensitive 
to the parameters that are fixed or have reduced range.  
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2.2. Analysis Procedure 
 

In general, the proposed analysis procedures follow six 
main steps (Fig. 1): (1) selection of input factors and 
construction of PDF’s; (2) generation of input sets by 
pseudo-random sampling of input PDFs according to the 
selected analysis method; (3) model runs for each input set; 
(4) global sensitivity analysis according to the method 
selected; (5) if the Morris screening method is selected, a 
subset of important parameters is obtained as a result, and 
steps 2-4 are repeated using the variance based methods, (6) 
uncertainty is assessed based on the outputs from the 
randomized variance-based model results by constructing 
PDF and the results are communicated to the end-users. 
 

 
Fig. 1. General schematic for the global sensitivity and uncertainty 
analysis of models. Numbers in circles represent the steps in the global 
evaluation procedure explained in the text. 
 
 

The software package, SimLab v2.2 (Saltelli et al., 2004), 
was used in the VFSMOD-W application. SimLab’s 
Statistical Pre-Processor module executes in the procedure 
(step 1, Fig.1), based on PDFs provided by the user and the 
method selected and produces a matrix of sample inputs to 
run the model (step 2, Fig. 1). A processor program was 
written in C# (C-sharp language) to automatically run 
VFSMOD once for each new set of sample inputs. The 
program automatically substitutes the new parameter set 
into the input files, runs the model, and performs the 
necessary post-processing tasks to obtain the selected 
model outputs for the analysis (step 3, Fig. 1). Outputs are 
stored in a matrix. The Statistical Post-Processor module of 
SimLab uses the input and output matrices to calculate the 
sensitivity indexes of the Morris and the Extended FAST 
methods (step 4, Fig. 1). The Data Analysis Toolpack of the 
Excel spreadsheet software (Microsoft Corp. Redmond, 
Washington, USA), was used to construct the output 
probability distributions and to quantify the uncertainty 
based on the set of Extended FAST results step 6, (Fig. 1). 
 
 
2.3. Application Case 
 

The vegetative filter strip (VFS) modeling design system, 
VFSMOD-W (Muñoz-Carpena et al., 1999; Muñoz-

Carpena and Parsons, 2004; Muñoz-Carpena and Parsons, 
2005) was used for this application. VFSMOD−W contains 
two components, the main program, VFSM, and a front-end 
program, UH, selectable by the user through the MS-
Windows graphical user interface (GUI). VFSM is a field-
scale, mechanistic, storm-based model developed to route 
the incoming hydrograph and sedigraph from an adjacent 
field through a VFS and to calculate the resulting outflow, 
infiltration, and sediment trapping efficiency. A hydrology 
sub-model in VFSM routes the input overland flow from 
the source area through the filter by solving the kinematic 
wave equation using finite elements (Muñoz-Carpena et al., 
1993a,b) coupled with the extended Green-Ampt equation 
to handle infiltration from natural storm hyetographs 
(Skaggs and Khaheel, 1982). The hydrology subroutine is 
linked to a sub-model for filtration of suspended solids by 
artificial grass media (Tollner et al., 1976, 1977) and later 
tested for field conditions (Barfield et al. 1978, 1979; Hayes 
et al., 1979, 1984; Wilson et al., 1981). When no measured 
VFS input data is available the UH front-end component 
can be selected to generate source area inputs for each 
design storm, including a rainfall hyetograph, a runoff 
hydrograph, and sediment loss from the source area using a 
combination of the NRCS curve number, the unit 
hydrograph, and the modified Universal Soil Loss Equation 
methods. With these inputs (Table 1), a set of response 
curves, i.e., sediment and runoff reduction vs. filter 
design/construction characteristics (filter length, width, 
grass type, slope), can be developed from VFSMOD−W 
outputs for a given design scenario (Muñoz-Carpena and 
Parsons, 2004). visit: http://carpena.ifas.ufl.edu/vfsmod/ for 
more information on VFSMOD-W. 

Although analysis of sensitivity and uncertainty of the 
model have been previously reported (Muñoz-Carpena et 
al., 1999; Abu-Zreig, 2001; Parsons and Muñoz-Carpena, 
2001; Shirmohammadi et al., 2006), only classical local 
OAT approaches were used. These studies serve as the 
basis for comparison with the global techniques presented 
here.  

The specific conditions selected for evaluation of the 
model are those of the phosphate-mining region of central 
Florida along the Peace River basin (Fig. 2). Continued 
mining has degraded water quality in the Peace River 
watershed and has left large mounds of refuse material that 
now shape the landscape surrounding the river. The mound 
material is essentially homogenous clean sand (>94% in 
weight) with a high concentration in apathite, the P mineral 
ore, and mixed with small pockets of clay in some points.  
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Table 1. Simulation parameters for the combined VFSMOD-W model 
(source area UH and grass buffer VFSM components) 
# Parameter Units Description 
UH (source area simulation parameters 
1 P mm Design Storm precipitation 
2 CN -- SCS curve number for source area 
3 A ha Area of upstream portion 
4 Storm 

type 
-- NRSC Storm type (1=I, 2=II, 3=III, 

4=Ia) 
5 D h Storm duration 
6 L  m Length of the source area along the 

slope 
7 Y  m/m Slope of the source area [m/m] 
8 Soil type -- USDA texture for source area top soil 

(label) 
9 K  (kg.h)/(m2.N) USLE soil erodibility index 
10 C  -- USLE cover and management factor 
11 Pfact  -- USLE conservation practice factor 
VFSM (vegetative filter strip simulation parameters) 
12 FWIDTH m Effective flow width of the strip 
13 VL m Length of the filter (flow direction) 
14 RNA(I) s /m1/3 Filter Manning’s roughness n for each 

segment 
15 SOA(I)  m/m Filter slope for each segment 
16 VKS m/s Soil vertical saturated hydraulic 

conductivity in the VFS, Ks 
17 SAV m Green-Ampt’s average suction at 

wetting front 
18 OS m3/m3 Saturated soil water content, θs 
19 OI m3/m3 Initial soil water content, θi 
20 SM m Maximum surface storage 
21 SCHK -- Relative distance from the upper filter 

edge where check for ponding 
conditions is made (i.e. 1 = end, 0.5 = 
mid point, 0 = beginning) 

22 SS cm Average spacing of grass stems 
23 VN s /cm1/3 Filter media (grass) modified 

Manning’s nm (.012 for cylindrical 
media) 

24 H cm Filter grass height 
25 VN2 s /m1/3 Bare surface Manning’s n for 

sediment inundated area in grass filter 
26 DP cm Sediment particle size diameter (d50) 
27 COARSE -- Fraction of incoming sediment with 

particle diameter > 0.0037 cm (coarse 
fraction routed through wedge as bed 
load) [unit fraction, i.e. 100% = 1.0] 

 
 

Currently, there is interest to study the potential of 
vegetative filter strips as a best management practice 
(BMP) to use in the mitigation plans that are required as 
part of the mining permitting process by the State of 
Florida. Field experiments are being conducted to quantify 
runoff quantity and quality from the refuse mining mounds 
and the effectiveness of VFS in the area (Kuo et al., 2005; 
Kuo, 2007). Values from these experiments are used as the 
basis for the global model evaluation described below.  
 

 
Fig. 2. Location of the model application area, phosphate-mining in the 
Peace River basin, Florida. 
 
 
2.4. Selection of Input PDF’s and Model Outputs  
 

The input factors of the model used in the example 
analysis (Table 1) were assigned ranges and PDFs 
representative of the application area in Bartow, FL Normal 
distributions were fitted to parameters with centrally 
distributed frequencies and a sufficient amount of data 
available (n>50), like source area and filter slopes (Y and 
SOA) and grass height (H) (Fig. 3). A log-normal PDF was 
selected for soil saturated hydraulic conductivity of the 
filter (VKS) and for the fraction of coarse sediment 
(COARSE) to match the uniform particle size distribution 
of the soil and sediment from the area. The beta (β) 
distribution was used for FWIDTH (effective flow width of 
the strip) and OI (initial soil water content) to match their 
smooth but biased (to the right of the mean) distributions 
(Fig. 3). Factors with reduced number of measurements like 
parameters related to vegetation (SS, VN), soil (CN, K, 
RNA, OS) and sediment particle diameter (DP) were given 
triangular PDFs based on the limited data available. Finally, 
the user-selectable parameter SCHK (node to check 
ponding during infiltration calculations) and Green-Ampt 
suction at the wetting front (SAV) were assigned uniform 
distributions since no known frequency pattern was 
identified through their ranges (Fig. 3). The rest of the 
parameters, such as, the optimal filter design lengths (VL), 
soil textural class (sand), and design storm characteristics 
(P, Storm type) selected for a return period of T=10 yr, 
were considered fixed since they were known for the area 
of application. Other factors like C, Pfact and SM were 
fixed to represent the worst case conditions. All input 
factors were assumed to be independent of each other. 
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Finally, in addition to the VFSMOD-W model parameters, 
the effect of the model structure (VFSM with or without 
UH component) was also considered as an input factor in 
the analysis. 
 

 
Fig. 3. Selected input probability distributions used in the global analyses 
of VFSMOD-W. 
 
 
Several model outputs were selected in the analysis to 
represent the potential variability of the hydrology and 
sediment transport components of the model (Muñoz-
Carpena et al., 1999) (Table 2).  
 
Table 2. Selected model outputs for use in the global sensitivity and 
uncertainty analyses of VFSMOD-W 
Component Output Units Description 
Hydrology 
UH TRS mm (depth over 

source area) 
Total runoff from source 
into filter 

VFSM TRF mm (depth over 
source+filter) 

Total runoff output from 
filter 

VFSM TIF mm (over filter) Total infiltration in filter 
VFSM RDR -- Runoff delivery ratio (flow 

out from filter / flow in) 
Sediment transport 
UH MSS kg Mass sediment Input from 

source area 
UH CSS g/L Concentration sediment in 

runoff from source area 
VFSM MSF kg Mass sediment output from 

filter 
VFSM CSF g/L Concentration sediment in 

runoff exiting the filter 
VFSM MSR kg Mass sediment retained in 

filter 
VFSM SDR -- Sediment delivery ratio 

(mass out from filter / 
mass in) 

VFSM EFL m Effective filter length 
VFSM WD m Sediment Wedge Distance 
 
 

Two of these outputs Runoff Delivery Ratio and Sediment 
Delivery Ratio (RDR and SDR), have been proposed as the 
objective functions for the design of the VFS (Muñoz-
Carpena and Parsons, 2004). Further sensitivity and 
uncertainty analyses results discussed in this work, are 
mainly focused on those VFS performance outputs. 

Four input sample sets were generated for the Morris and 
FAST methods. Each sample set represented a combination 

of the two model structures (VFSM or UH/VFSM) and one 
of design filter lengths studied in the area (VL=3m or 6m). 
The number of model runs for each method was selected 
according to the number of uncertain parameters in each 
model structure based on equations (2) and (6). The number 
of simulations run for each method (Table 3) illustrates one 
of the potential advantages of the Morris method over 
FAST, i.e. the relatively shorter computation time needed. 
 
Table 3. Comparison of the number of simulations run for each of the 
global analyses methods in the application (np: number of parameters) 

Morris FAST Model  
structure 

VL 
(m) np Runs np Runs 

Total runs 

VFSM 3 14 150 4 4995 5145 
UH/VFSM 3 16 170 7 7974 8144 
VFSM 6 14 150 4 4995 5145 
UH/VFSM 6 16 170 7 7974 8144 
Total sims.  640  25938  
 
 
3.- Results and discussion 
 
 
3.1. Global Sensitivity Analysis 
 
 
3.1.1. Screening Method: The Method of Morris  
 

Fig. 4 shows the graphical representation of the Morris 
values for a selected subset of outputs for filter design 
length of 6 m (VL=6m). As suggested by Morris, the 
ranking of importance of the input factors can be based on 
the relative value of μ*. Furthermore, only parameters 
separated from the origin of the μ*-σ plane are considered 
important. 

The number of important parameters identified was 
effectively smaller than the full set of model inputs studied 
(down to 4 from the original 14 for VFSM and to 6 from 16 
for UH/VFSM). 

The previous study on local OAT sensitivity of VFSM 
(Muñoz-Carpena et al., 1999) indicated that the main 
parameters controlling the runoff from the filter were VKS 
and OI. However, no relative ranking of the inputs could be 
produced. The Morris analysis of VFSM shows a strong 
influence of VKS on RDR and TRF, although OI is not 
found important relative to them. This is shown in Fig. 4 for 
the RDR output (top of the figure) where only VKS is 
shown away from the μ*-σ plane. Since the important 
parameters is closer to the μ* axis its influence is mostly 
through first order effects with a small interaction 
component. The infiltration in the filter (TIF) is influenced 
mainly by VKS. As expected, VKS, the Green-Ampt 
infiltration parameter, controls the infiltration in the VFS.  
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Fig. 4. Global sensitivity analysis of VFSMOD-W obtained from the 
Morris screening method of VFSMOD-W (VL=6 m). 
 
 

Outputs from VFSM alone related to sediment outflow 
from the filter (MSF and SDR) are controlled in order of 
importance mainly by DP and FWIDTH with smaller 
influence of VKS. In case of the filter outflow sediment 
concentration (CSF), DP appears as the most important of 
the three. This can be explained by the fact that the 
sediment concentration is calculated directly from both 
mass of sediment and water outflow, where MSF and SDR 
represent dry mass of sediment alone. . Previous local OAT 
testing of the sediment component of VFSM showed that 
the main parameters controlling sediment outflow were 
particle class and the media spacing (Muñoz-Carpena et al., 
1999). The high ranking of DP is in agreement with 
findings of Abu-Zreig (2001) that sediment class is 
influential for SDR. Lack of influence by SS observed in 
current results could be explained by the relatively small 
range of this factor, measured for the Bartow conditions. 
Abu-Zreig (2001) also identified FWIDTH as an important 
factor for the VFS performance (Abu-Zreig et al. 2001). 
This is confirmed by the Morris analysis that identifies 
FWIDTH as the second or third most important parameter 
for the filter sediment outputs for all combinations studied. 

Sediment related outputs for the UH/VFSM structure 
show an importance of the source area erosion parameters 
in UH (Y, K and CN), additionally to those controlling 
sediment dynamics in the VFSM component alone (DP and 
FWIDTH). In some cases it is difficult to differentiate the 
relative importance of some parameters like VKS, CN, K 
and DP in CSF or DP and CN, K and FWIDTH in SDR for 
UH/VSMOD (Fig. 4). This can introduce an element of 
subjectivity in the Morris analysis. As seen in Fig. 4, for all 
important parameters and sediment outputs, the interactions 
seemed limited.  

These initial screening results clearly illustrate four of the 
products of the global sensitivity analysis: importance of 
the parameters for different outputs, effect of changing 
modeling structure, assurance on the model’s behavior 
(absence of errors), type of influence of the important 
parameters (first order or interactions). 
 
 

3.1.2. Variance-Based Method: Extended FAST 
 

The subset of important parameters selected by the 
screening method for each model combination was used for 
further analysis with the extended FAST method. These 
parameters were: VKS, DP and for VFSM model structure, 
and additionally Y, K, and CN for UH/VFSM model 
structure. The results for selected outputs and the filter 
length of VL = 6m, are presented in Fig. 5. This figure 
depicts the fraction of the total output variance explained by 
each parameter (vertical axis) for each of the selected 
outputs (horizontal axis). The first order linear effects (Si) 
are presented first for each model structure (Fig. 5 a,c) 
followed by the higher order interactions (Si-STi) (Fig. 5 
b,d). 

 

 
 Fig. 5. Global sensitivity analysis of VFSMOD-W obtained from the 
variance-based Extended FAST method: (a) first order effects; (b) total 
order effect (VL=6 m). Units on the vertical axis are fraction of total 
output variance. 
 
 

The Extended FAST results obtained reinforce and 
quantify those from Morris method, and in some cases 
eliminate the subjectivity introduced in the qualitative 
approach of the later (Fig. 5a). For the CSF output it is 
know easy to separate VKS, CN, K and DP (with 13%, 
10%, 8% and 9% variance explained). Similarly, the 
variance of SDR can be attributed in 30% to DP, 25% to 
CN, 5% and 6% to K and FWIDTH, respectively.  

The Extended FAST results are considered more reliable 
than Morris results, since they are based on a much larger 
number of simulations (Table 3) and less structured 
sampling scheme. 

The sum of the total effects (ΣSi) is graphically presented 
for both model structures by a thick line in Fig. 5a and 5c. 
In general, the sum of first order effect is greater than 80% 
of the total variance for most outputs for both model 
structures, with the exception of the sediment wedge 
dimensions EFL and WD for UH/VSMOD (50% of total 
variance). The general additivity of the model can lead to 
an efficient calibration in most field situations if reliable 
data is provided. 
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3.1.3. Global Uncertainty Analysis from Extended FAST 
Results 
 

Following Morgan and Henrion (1992, Chapter 9), to 
communicate the uncertainty graphically to end-users the 
density and cumulative probability distributions (CDFs) 
were constructed for the selected outputs and both model 
structures (Fig. 6). Another method recommended by these 
authors, the 95% confidence interval (i.e. range of output 
values between 2.5% and 92.5% cumulative distribution 
percentiles) can also be calculated on the basis of these 
distributions. 

Example uncertainty analysis statistics for the Sediment 
Delivery Ratio obtained from FAST results are presented in 
Fig. 6.  

The difference between CDFs for VFSM and UH/VFSM 
illustrates the relative effects of model structure on output 
uncertainties. Generally larger output variances are 
observed for UH/VFSM, which is expected since additional 
variance is introduced by the larger number of uncertain 
parameters. The filter length does not systematically affect 
the ranges of the PDFs. 

The uncertainty of the results can also be communicated 
as probability of exceedance of a desired regulatory or 

design value. For example if 75% reduction of runoff 
sediment (SDR≤0.25) by the VFS is desired for the 10-yr 
design storm in the area, the results in Fig. 6 indicate that 
for the 6 m filter this probability will be approximately 5% 
for the combined model and approximately 7% for simpler 
model structure, The 6 m filter will perform as desired in, 
respectively, 95% and 93% of events. In the case of the 3 m 
filter, the probability of exceedance of a desired SDR=0.25 
will be greater that 75% percent of the cases for two model 
structures, which idicates that this filter does not meet the 
design criteria in the area of application.  
 
 
4.- Summary and Conclusions 
 

A model evaluation framework was proposed for 
hydrological and water quality models combining two types 
of global sensitivity analysis techniques (screening method 
of Morris and variance-based Extended FAST) and 
uncertainty analysis (based on Extended FAST results). 

The use of the proposed framework is illustrated through 
an application to evaluate the vegetative filter strip 
modeling system VFSMOD-W and comparison with a 
previous OAT sensitivity analysis of the model.  

 
Fig. 6. Global uncertainty results for SDR obtained from FAST results of VFSMOD-W (VL=3 and 6 m). Left vertical axis units indicate the output 
probability density distribution (frequency) and the right vertical axis the cumulative probability distribution (CDF). 
 
 

The results illustrate four possible products of global 
sensitivity analysis: ranking of importance of the 
parameters for different outputs, effect of changing 
modeling structure, assurance on the model’s behavior, 

type of influence of the important parameters (first order or 
interactions). The proposed framework provided further 
validation of the model quality since no errors were detected 
regarding the model behavior (all the relations between 
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inputs and outputs could be explained on the basis of the 
model assumptions). In contrast to previously performed 
OAT sensitivity analysis of the model, the method of 
Morris was able to provide a ranking of the significant 
parameters for a variety of outputs. In the case of the 
runoff and sediment delivery ratios (RDR and SDR), used 
as objective functions in the filter design, for the simpler 
model structure (VFSM component alone), VKS was 
identified as the controlling parameter in respect to the 
RDR whereas the order of importance with respect of 
SDR was DP > FWIDTH> VKS. Additionally, for the 
combined UH/VFSM model structure the source area 
parameters: Y, CN, K for SDR were ranked above VFSM 
parameters: FWIDTH and VKS (but not DP). FAST 
results reinforced and quantified those of Morris and 
indicated the additive nature of the model (sum of first 
order effects, Si>0.8 for RDR and SDR) that can lead to 
its effective calibration if reliable input data is available. 
As expected, the predicted model uncertainty was higher 
for UH/VFSM than for VFSM since more uncertain 
inputs were used in the combined model. The evaluated 
uncertainties of the model outputs also varied depending 
on the filter length. Based on the uncertainty the 
probability of exceedance of a desired SDR=0.25 (filter 
traps 75% of input sediment) was found to be 
approximately 5% and 7% for UH/VSMOD and VFSM 
model structures (acceptable at 95% and 90% uncertainty 
level) for the 6 m filter, while for the alternative 3 m filter 
this was over 75% (unacceptable at 90% uncertainty 
level).  

No evaluation method can be considered objective since 
it relies on the interpretation by the modeler of the input 
variation. Yet, the proposed global analysis framework is 
found robust and reproducible since it considers 
concurrent variation of the input factors without a priori 
judgment of their relative importance over the output.  
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