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ABSTRACT. New remote sensing methods based on 
narrow-band hyperspectral instruments enable the 
estimation of vegetation biophysical parameters and leaf 
biochemicals used to detect nutritional and water stress 
condition. This paper summarizes new advances in 
hyperspectral and thermal remote sensing for vegetation 
monitoring through biochemical and biophysical 
parameter estimation, discussing the potential for 
detecting water stress using high-resolution thermal 
instruments onboard airborne platforms. 
 
RESUMEN. Nuevos métodos de teledetección basados 
en sensores hiperespectrales de banda estrecha permiten 
potencialmente la estimación de parámetros biofísicos de 
la vegetación y la detección de la concentración de 
constituyentes bioquímicos foliares asociados a niveles de 
estrés nutricional e hídrico. Este artículo resume avances 
en la detección de estrés nutricional mediante la 
estimación de parámetros bioquímicos, así como la 
viabilidad de la detección de estrés hídrico mediante 
sensores térmicos de alta resolución espacial instalados en 
vehículos aerotransportados. 
 
 
 
1.- Introduction 
 

In the 30 years since the launch of the first Earth 
Resources Technology Satellite (ERTS) on 23 July 1972, 
remote sensing data has become integral to environmental 
monitoring and assessment throughout the world. During 
this time, we have seen analysis of the data advance from 
simple visual observations to sophisticated interpretations 
based on first principles of spectroscopy and 
electromagnetic radiation. From the beginning of satellite 
data, starting with NASA’s Multispectral Scanner (MSS, 
launched in 1972) and Thematic Mapper (TM, launched 
in 1984) and NOAA’s Advanced Very High Resolution 
Radiometer (AVHRR, launched in 1978), satellites have 
demonstrated that measurement of land cover advanced 
our understanding of the spatial and temporal variability 
of many ecosystems and environmental conditions. In 
doing this, remote sensing observations have brought a 
new awareness of the spatial context in which ecological 
processes occur, while emphasizing the inter-connection 

of ecosystems. The advent of digital multispectral satellite 
and airborne sensors stimulated the development of new 
computerized analytical tools and visualization methods, 
initiated thinking about detecting biogeochemical processes 
that are measurable in different regions of the 
electromagnetic spectrum (EM), including measuring the 
fluxes and storage of materials between the air, land, sea 
components of biogeochemical (BGC) cycles. This paper 
summarizes the progress made on land cover mapping, and 
vegetation biophysical parameter and biochemical 
estimation using hyperspectral and thermal sensors. 
 
 
2.- Land cover mapping 
 

Land cover characteristics influence mass and energy 
exchanges at the land-atmosphere boundary (Cihlar et al. 
1997). Land cover maps are derived from coarse AVHRR 
data at the global scale (e.g., 0.5° - 1°), and rely on the 
Normalized Difference Vegetation Index (NDVI) or a 
monthly time series of NDVI to differentiate land cover into 
regionally specific vegetation types (DeFries et al. 1994, 
1999; Verstraete et al. 1996; Potter and Brooks, 1998). The 
global extent of land-use conversions increase uncertainty in 
the net flux of CO2 (Schimel, 1995). More accurate spatial 
distribution and percent cover of the major ecosystem types 
is essential to improve BGC process models as is the 
variance within classes. NDVI data are used as inputs for 
many model parameters in Global Circulation Models 
(GCMs) and BGC models including properties for 
estimating carbon fluxes, stores, and turnover rates, as well 
as other land cover characteristics impacting the carbon 
budget. NDVI is also used to estimate carbon assimilation 
processes using the fraction of absorbed Photosynthetically 
Active Radiation (fPAR), net primary productivity (NPP) 
and net ecosystem productivity (NEP). 

 
The most widely used ecosystem models (Foley et al. 

1998) only use vegetation index (NDVI) data products to aid 
in estimating carbon uptake and allocation in vegetation. 
However, remote sensing paramaterizations have not 
advanced along with the model advances and do not take 
advantage of the new data resources. Only one variable—
NDVI—is used to estimate multiple plant properties 
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including LAI, evapotranspiration, photosynthesis, 
primary productivity and carbon cycling (e.g., Running et 
al. 1999).  

 
A major research effort to reduce carbon cycle 

uncertainties over the last decade has improved estimates 
of CO2 fluxes between the biosphere and atmosphere. 
Process modeling has received the most attention, which 
as produced more realistic mechanistic models (e.g., ; 
Field et al. 1995; Asner et al. 2001). The greatest 
contribution of remote sensing to BGC models has been 
in making spatially distributed land cover maps (e.g., 
DeFries and Townshend, 1994; Los et al. 2000) and 
measurement of absorption of photosynthetically active 
radiation (PAR) (Field et al. 1995). There is widespread 
agreement among carbon cycle researchers that additional 
constraints on land-surface processes are essential for new 
advances in prognostic capability. Imaging spectrometers 
(hyperspectral imaging instruments), multi-band, multi-
polarization radar, and multi-band lidar could provide 
some of the needed information.  

 
Lasers promise to provide improved estimates of canopy 

biomass, canopy height and roughness, which are used in 
estimating productivity, biogeochemical fluxes and 
biometeorological modeling and to address issues like 
fuel load for wildfire hazard. Airborne systems can 
produce maps with horizontal resolutions of submeters to 
meters and height resolutions of a few centimeters. With 
new multiband satellites capable of global mapping e.g., 
MODIS, SPOT Vegetation, SeaWIFS, MERIS, which in 
some cases have multiple viewing capabilities (e.g., 
POLDER, SPOT-5, MISR), there are opportunities to 
measure new features related to the canopy structure and 
to assess the non-photosynthetic components of the plant 
canopy, like the aboveground water content, woody 
tissues and plant litter. These instruments could provide 
more information on the 3-dimensional structure of the 
canopy and provide independent information on soil and 
geologic conditions, all of which could improve land 
cover mapping. In all cases where optical instruments 
have been compared, hyperspectral imaging (HSI) 
instruments provide more detailed information about land 
cover than multiband instruments. Ustin and Xiao (2001) 
compared classifications from SPOT and NASA’s 
airborne Advanced Visible Infrared Imaging 
Spectrometer (AVIRIS) both with 20 m spatial resolution 
and showed much greater delineation of cover types 
compared to pre-existing field-based vegetation maps. 
AVIRIS measures 224 spectral bands at ~10 nm 
bandwidth over the 400-2500 nm wavelength region. 
Fine-scale landscape heterogeneity in boreal ecosystems 
(e.g. deciduous and evergreen forests, fens, bogs and 
small lakes) call into question the use of coarse spatial 
resolution data (between 1 km and 1º) obtained from the 

NOAA Advanced Very High Resolution Radiometer 
(AVHRR). Many of these problems persist even with high 
spatial resolution Landsat TM data (Steyaert et al. 1997). As 
an example, a critical contribution to the BOREAS program 
was the development of accurate land cover information at 
local and regional scales (Sellers et al. 1995) for which 
Landsat Thematic Mapper (TM) data was analyzed utilizing 
a physically-based classification algorithm that employed 
geometric canopy reflectance models (Hall et al. 1999). 
Their approach exploited systematic species differences by 
focusing on wavelength regions sensitive to foliar chemistry 
(Fig. 1). Spectral parameters used were the red-edge 
inflection point (λp), the wavelength at the reflectance 
minimum (λo), and a shape parameter (σ), as defined by an 
inverted-Gaussian red-edge curve-fit model (e.g., Hare et al. 
1984). In contrast to multiband sensors, hyperspectral 
instruments can measure individual spectral features related 
to pigment composition (Peñuelas et al. 1995), canopy water 
content (Serrano et al. 2000), canopy dry plant litter and/or 
wood, or other aspects of foliar chemistry (Martin et al. 
1998; Serrano et al. 2002). An extension of this work used 
pigment classes in a spectral unmixing procedure to map the 
relative abundance of pigments, and seven indices of 
vegetation structure and physiological function related to the 
pigment content and calculated from water absorption 
features. Indices such as the water band index (WBI), and 
the normalized difference water band index (NDWI, Gao, 
1996) vary with vegetation type, LAI, and physiological 
state. Accuracy of the resulting land cover map, when 
compared to forest inventory classifications, were 
significantly improved using red-edge indices, which 
exceeded 68% for all classes (Zarco-Tejada et al. 1999). 
This result improved to 66.6%-80.1% by including water-
based indices (Fuentes et al. 2001), demonstrating the 
superior results obtained with hyperspectral instruments. 

 
 

3.- Vegetation stress detection 
 

Because of the importance of photosynthetic function, leaf 
optical properties have been the subject of hundreds of 
studies since the middle of the last century. Most papers 
focused on the spectral properties of leaves (hemispherical 
reflectance and transmittance) which were used to estimate 
their biochemical content (chlorophyll, water, dry matter, 
etc.) and their anatomical structure. When foliage changes 
through phenological aging or when plants undergo 
environmental stresses, leaf chlorophyll content is observed 
to decline. This results in an increase in the reflectance and 
transmittance over the visible spectrum. These relationships 
were usually established empirically or directly estimated, 
using a physical model. Consequently, the bidirectional 
properties of leaves have received little investigation in 
contrast to plant canopies, where this has stimulated more 
study. 
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Although the leaf surface characteristics are intuitively 

understood to be the primary factor involved in BRDF 
properties, the impact of these leaf surface properties on 
airborne and satellite data has not been determined. The 
current generation of spaceborne sensors (e.g., MISR and 
POLDER) measure the radiance of targets at several 
viewing angles that provide an opportunity to investigate 
this aspect of leaf optical properties as discussed in recent 
workshops on multiangular remote sensing (Verstraete 
and Pinty 2001). The sizes of the scattering objects on 
leaf surfaces (e.g., waxes and hairs) will produce 
wavelength dependent scattering that is independent of 
the canopy structure and independent of leaf 
biochemistry. Hundreds of papers have detailed variation 
in spectral properties in relation to leaf biochemical 
composition and structure, which themselves depend on 
many factors including the species, developmental or 
microclimate position of the leaf on the plant, and 
whether it is stressed or not. The domain of optical 
observations is divided from 400 nm to 2500 nm in three 
parts: the visible (400 nm - 700 nm) characterized by a 
strong absorption of light by photosynthetic pigments in a 
green leaf (Fig. 2); the near-infrared plateau (700 nm - 
1100 nm) where absorption is limited to dry leaf matter 
but where multiple scattering within the leaf, related to 
the fraction of air spaces, i.e., to the internal structure, 
drives the reflectance and transmittance levels; and the 
middle-infrared and shortwave-infared (SWIR, 1100 nm - 

2500 nm) which is also a zone of strong absorption, primarily 
by  
water in fresh leaves and secondarily, by dry matter (dry 
carbon compounds like cellulose and lignin, nitrogen, sugars, 
and other plant compounds) when the leaf wilts and dries. All 
of these observations and experimental measurements are a 
prerequisite to extracting biophysical information. 
 
 
3.1. Biochemistry estimation for nutrient stress detection 
 

Quantitative estimation of leaf biochemical and canopy 
biophysical variables is a key element to the successful 
application of remote sensing in vegetation monitoring, a 
major goal in terrestrial ecology and a long-term research 
objective given the complexity of the vegetation canopies and 
phenomena (Goetz et al., 1992). Accurate estimates of leaf 
pigments, nitrogen, dry matter, water content, and leaf area 
index (LAI) from remote sensing can assist in determining 
vegetation physiological status (Carter, 1994), the study of 
species and seasonal dependence, and may serve as 
bioindicators of vegetation stress (e.g. Zarco-Tejada et al., 
2001). 

The estimation of leaf biochemistry in field crops and 
orchard tree crops have important potential implications for 
agricultural field management, crop stress and chlorosis 
detection, and especially for precision agriculture practices. 
Chlorophyll concentration (Cab) and other leaf biochemical 

Fig 1. Vegetation map of the JP-FEN (jack pine fen) site (top) and OBS (old black spruce) site (bottom). Evaluation of classification accuracy of different 
methods, where panels a and e are the SERM FBIU map obtained from the BOREAS Information System (BORIS), and assumed to be true. Panels b and 
f are the Landsat TM physical classification from BORIS (Hall, 1999). Panels c and g are the AVIRIS leaf-based and Panels d and h are the index-based 
classifications, derived from the 21 July 1994 overflight. 
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constituents, such as dry matter (Cm) and water content 
(Cw) may be used as indicators of crop stress through 
their potential influence on nutritional deficiencies. Such 
deficiencies may be related to crop chlorosis that can be 
successfully treated thereby improving yields and the 
final crop quality. On the other hand, over-fertilization of 
crops affects carbon storage, generates vegetation injury 
for prolonged N additions and increases N losses by 
gaseous and solute pathways to the soil. The total 
chlorophyll content in leaves decreases in stressed 
vegetation, changing the proportion of light-absorbing 
pigments and leading to less overall absorption due to 
lower chlorophyll a and b concentrations at the leaf level. 
Differences in reflectance between healthy and stressed 
vegetation due to changes in pigment content have been 
detected in the reflectance green peak and along the red 
edge, providing remote detection methods to map 
vegetation stress through the influence of chlorophyll 
content variation.  

Several narrow-band leaf-level optical indices have 
been suggested for Cab estimation from hyperspectral 
reflectance data (see Zarco-Tejada et al., 2001). Red Edge 
Reflectance Indices such as Vogelmann (R740/R720) and 
(R734-R747)/(R715+R726); Gitelson & Merzlyak (R750/R700); 
Carter (R695/R760); Zarco-Tejada & Miller (R750/R710), and 
Spectral and Derivative Indices such as the red edge 
parameters λp, λo, σ (Miller et al. 1990), and derivative 
indices (D715/D705)  

and DP21 (Dλp/D703) have been shown to yield the best 
results for Cab estimation at both leaf and canopy levels. 
Recently, combinations of indices based on TCARI, MCARI, 
and OSAVI, such as TCARI/OSAVI and MCARI/OSAVI 
(Haboudane et al., 2002), have been demonstrated to 
successfully minimize the effects of soil background variation 
and LAI canopy changes, resulting in prediction relationships 
for easy use for precision agriculture with Compact Airborne 
Spectrographic Imager (CASI) hyperspectral imagery. 

The successful estimation of leaf biochemical constituents 
from hyperspectral data in homogeneous crops (Haboudane et 
al., 2002) and closed forest canopies (Zarco-Tejada et al., 
2001) has demonstrated the utility of scaled-up indices 
through radiative transfer simulation. Moreover, model 
inversion techniques, based on linked leaf-canopy radiative 
transfer models, have been shown to be a feasible method for 
biochemical estimation from canopy-level reflectance in 
closed canopies and through simulation studies modelling 3D 
forest canopies (Demarez and Gastellu-Etchegorry, 2000). 

Several indices have been proposed in the literature to track 
chlorophyll concentration, although such indices do not show 
the same performance at the leaf and at the canopy levels, due 
to the effects of scene components, soil and shadows, on 
canopy-level indices. Generally good  
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Fig. 2. Effects of leaf biochemical constituents such as chlorophyll Ca+b (upper left), dry matter Cm (upper right), 
equivalent water thickness Cw (lower left), and leaf structural parameter N (lower right) on leaf reflectance, simulated 
using the PROSPECT model. 
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results are found for Cab estimation at the leaf level with 
red edge and spectral and derivative indices such as 
R750/R710, R740/R720, (R734-R747)/(R715+R726), (R734-R747)/ 
(R715+R720), D715/D705, R750/R550, R750/R700, R695/R760, λp, 
Dλp/D703, and Dλp/D720 (Zarco-Tejada et al., 2001). In 
agricultural canopies, with large effects of soil 
background and LAI variation at different growth stages, 
combined indices have been proposed to minimize such 
background soil effects while maximizing the sensitivity 
to Cab. CARI (Chlorophyll Absorption in Reflectance 
Index) was shown to reduce the variability of 
photosynthetically active radiation due to non-
photosynthetic materials. MCARI (Modified Chlorophyll 
Absorption in Reflectance Index) was a modification of 
CARI to minimize the combined effects of the soil 
reflectance and the non-photosynthetic materials. SAVI 
(Soil-Adjusted Vegetation Index) and OSAVI (Optimized 
Soil-Adjusted Vegetation Index) were proposed as soil-
line vegetation indices that could be combined with 
MCARI to reduce background reflectance contributions. 
Successful Cab estimation on corn agricultural canopies at 
different growing stages was achieved with the 
TCARI/OSAVI combined index, proving its robustness in 
the presence of variations in canopy LAI and background 
exposure (Haboudane et al., 2002), and olive orchards 
(Fig. 3). 
 
 
3.2. Water content estimation 
 

The remote determination of one of these biochemical 
constituents, vegetation water content, has important 
implications in agriculture and forestry, it is essential for 
drought assessment in natural vegetation, and it is a major 
driver in predicting the susceptibility to fire. Several 
studies demonstrate the existing link between leaf-level 
reflectance in the 400-2500 nm spectral region and the 
amount of water in the leaf through optical indices, 
regression analysis and radiative transfer modeling 
(Gausman et al., 1970). The primary and secondary 
effects of water content on leaf reflectance showed that 
sensitivity of leaf reflectance to water content was 
greatest in spectral bands centered at 1450, 1940, and 
2500 nm. Indirect effects of water content on reflectance 
were also found at 400 nm, in the red edge at 700 nm and 
on vegetation indices such as NDVI. The effects of leaf 
structure on the water absorption bands showed that 
derivative reflectance calculated in the water absorption 
features minimized the effects due to leaf structure, 
therefore maximizing the sensitivity to leaf water content. 
Lately, the broad use of leaf radiative transfer models 
such as PROSPECT (Jacquemoud and Baret, 1990) for 
broadleaf species, enable the simulation of the leaf optical 
properties as a function of leaf structural and biochemical 
constituents such as chlorophyll a+b (Ca+b), dry matter 
(Cm), and leaf equivalent water thickness (Cw). Several 
research efforts focus on the application of leaf-level 
indices calculated from water-absorption bands, statistical 

relationships between leaf reflectance and leaf water 
content, and scaling-up methods to canopy level through 
radiative transfer simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

As an example, airborne Visible Infrared Imaging 
Spectrometer (AVIRIS) imagery was used to derive 
equivalent water thickness in vegetation using nonlinear and 
linear least squares spectral matching techniques, achieving 
good agreements with ground measured leaf fuel moisture 
content (Gao and Goetz, 1995). Other ratios, such as the 
Plant Water Index (PWI, R970/R900) was used to map 
vegetation water content with AVIRIS imagery, but found to 
be affected not only by water content, but also by canopy 
structure and viewing geometry therefore highly dependent 
on bi-directional and geometrical effects of the vegetation 
canopy. The Normalized Difference Water Index (NDWI) 
calculated as (R860-R1240)/(R860+R1240) was suggested 
by Gao (1996) in a theoretical study, demonstrating its 
potential applicability for canopy-level water content 
estimation based on the liquid water absorption band 
centered at 1240 nm enhanced by canopy scattering.  

MODIS reflectance data were processed from the same 
period for equivalent water thickness estimation by model 
inversion linking the PROSPECT leaf model and SAILH 
canopy reflectance model. MODIS reflectance data, viewing 
geometry values, and LAI were used as inputs in the model 
inversion for estimation of leaf equivalent water thickness, 
dry matter, and leaf structure. Results showed good 
correlation between the time series of MODIS-estimated 
equivalent water thickness and ground measured leaf fuel 
moisture content (r2=0.7), demonstrating that these inversion 

Fig. 3. Mapping chlorophyll concentration at the crown level by 
scaling up MCARI/OSAVI through PROSPECT-SAILH from 1-
m ROSIS image. 
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methods could potentially be used for global monitoring of leaf water content in vegetation (Fig. 4). 
 
3.2.1. Thermal remote sensing for stress detection 
 

Water stress develops in crops when the evaporative 
demand exceeds the supply of water from the soil. As a 
result, plant water status declines and that affects 
physiological processes, such as leaf expansion and other 
growth processes. Most crops are very sensitive to water 
deficits, and their yield is negatively affected even by short-
term water deficits. Although water content in vegetation 
canopies can be assessed by remote sensing, leaf water 
potential is a more precise indicator of the plant water 
status for predicting effects of water deficits on crop yields 
because small changes in the relative water content of leaf 
tissues corresponds to large changes in leaf water potential. 
Changes in leaf water content that may be easily detectable 
normally occur at advanced stages of dehydration, being 
therefore a parameter of limited interest for predicting crop 
water status for situations where high crop productivity 
levels are sought. Even though there is interest in obtaining 
leaf water potential information, it is often suggested that 
pre-dawn measurements of leaf water potential are the most 
accurate to estimate soil moisture status but the 
inconvenience and narrowness of time window makes this 
measurement impractical. The dynamics of the daily course 
of leaf water potential (LWP) makes it difficult to 
determine the appropriate time of measurement; however, 

LWP in sunny days is relatively constant for several hours 
around solar noon, the time when it reaches its minimum 
value. When the plant is stressed and transpiration 
decreases, the crop canopy temperature tends to rise 
appreciably because of the reduction in evaporative 
cooling. This is the basis for the approach of sensing crop 
stress by monitoring canopy temperature with thermal 
infrared radiation (Jackson et al., 1977). This technique has 
been widely studied and developed mainly using hand-held 
thermal infrared thermometers. Despite the potential 
usefulness of remote sensing for thermal detection in 
vegetation canopies, studies where satellite or airborne 
thermal remote sensing is used for water stress detection are 
uncommon, in particular for open canopies such as tree 
crops. This is probably due to the lack of sensors onboard 
satellites with optimal spatial resolution to monitor orchard 
crops at the tree scale (i.e. ideally 0.5 to 2 m resolution in 
the thermal region), with current available sensors varying 
from 90 m (ASTER) to 1000 m (MODIS) pixel size. In 
addition, there are the current and future severe limitations 
with Landsat. Even in the case of high-spatial resolution 
imagery collected from airborne sensors, shadows and 
direct soil influences involve problems in the canopy 
temperature retrieval due to the canopy heterogeneity 
characteristic in orchard canopies. 

 

Fig. 4. Time series of MODIS-estimated leaf water content in vegetation for the period June-
September 2000. Reflectance and viewing geometry (ts, tv, ps) from MOD09A1, and LAI from 
MOD15A2 MODIS products were used as input parameters in the iteration method, with N, Cw and 
Cm leaf parameters subject to inversion. Darker green color corresponds to higher Cw. 
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Nevertheless, recent studies on surface temperature 
estimation with high spatial resolution remote sensing 
imagery have proved that this technology is available for 
obtaining accurate measurement of surface temperature. 
Different methods can be used to retrieve land surface 
temperature from thermal infrared data provided by only 
one or two thermal bands, as for example the single-
channel methods or the split-window technique. Land 
surface temperature and emissivity can be also obtained 
from multispectral thermal data using the Temperature 
and Emissivity Separation (TES) algorithm. A detailed 
review of methods can be found in Sobrino et al (2002). 
The feasibility of these methods for retrieving land 
surface temperature from ten thermal-infrared bands of 
the Airborne Hyperspectral Scanner (AHS) is assessed in 
Sobrino et al. (2006). 

Recent results by Sepulcre-Cantó et al. (2006) 
demonstrate i) that the remote sensing detection of mild 
water stress in a commercial peach orchard is feasible 
over treatments under deficit irrigation; and ii) that there 
is potential for the application of thermal remote sensing 
as an indicator of some fruit quality parameters in open-
canopy orchards at the tree scale. Results of the 2004 and 
2005 field campaigns showed that canopy temperature, 
stem water potential and stomatal conductance varied 
with the irrigation treatments applied to olive and peach 
trees. Infrared thermal sensors and thermal cameras were 
able to detect the temperature differences due to water 
stress even under the conditions in the peach orchard 
where limited irrigation deficits were applied to sustain 
maximum productivity. However, in the olive, Tc-Ta 
yielded up to 6 K for trees under deficit irrigation during 
the period of maximum stress, while Tc-Ta yielded 5 K 
for trees under well irrigated treatment. The peach tree 
crowns were warmer than the olives, with Tc-Ta of up to 
7 K for trees under deficit irrigation and 6 K for well 
irrigated trees. Field measurements with the thermal 
camera showed a greater thermal homogeneity for the 
crown temperature in well-watered trees, obtaining a 
determination coefficient of r2=0.48 between standard 
deviation of the imagery and the stem water potential. 
Results obtained from the AHS imagery showed at 

midday on 16 July 2005 differences in Tc-Ta between fully 
irrigated and stressed of 2 K in both cases (olive and peach 
trees). These results show that AHS sensor was able to detect 
thermal differences between olive and peach trees under 
different deficit irrigation treatments. Determination 
coefficients between crown Tc-Ta obtained with the airborne 
AHS thermal imagery and olive tree stomatal conductance 
yielded r2=0.60 (12:30 GMT) for individual trees, and r2=0.87 
(7:30 GMT) for plots of 12 trees under the same irrigation 
treatment. Determination coefficients between olive stem 
water potential and Tc-Ta for individual trees r2=0.49 (12:30 
GMT), and r2=0.52 (12:30 GMT) for plots of 12 trees under 
the same treatment. These results confirm that temperature 
differences observed in trees under different irrigation 
treatments were due to water stress. Results on the peach 
orchard also showed successful detection of water stress as a 
function of mild water deficits imposed by different irrigation 
levels that aimed at maintaining full commercial productivity. 
Maps of Tc-Ta could be used to assess the level of water 
deficits over orchards and to predict its impact on yield and 
fruit quality. 
 
 
4.- Conclusions 
 

In this chapter we have attempted to highlight recent 
advances in image processing and data analysis for 
understanding the function and structure of the plant canopy. 
We have pointed out areas where ecosystem and global 
change models need improved data products to reduce their 
current levels of uncertainty. Clearly this is a shifting baseline 
since instruments and models are improving at a rapid pace. 
Nonetheless, there remains a wide range of problems that 
need to be solved to extend our understanding. Many of these 
issues will be improved quickly while others may take a 
decade or more, depending on how rapidly new instrument 
technologies and computational/mathematical tools become 
widely available to the research community. The importance 
of addressing environmental problems and issues using 
remote sensing data will continue to apply pressure for 
developing improved measurement and monitoring methods. 
For the first time ever, it is possible to observe the Earth from 

<1 
1-4 
>4 

Tc-Ta (K)

Fig. 5. Canopy temperature (Tc) minus air temperature (Ta) images obtained from the AHS sensor on 25 July 
2004 at three over fight times: (d) at 7:30, (e) at 9:30 and (f) at 12:30 GMT. 
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space using data spanning the spatial resolutions of sub-
meter Quickbird to km scale AVHRR, SeaWIFS, 
MERIS, and others and at time intervals from multiple 
times daily to bimonthly. The abundance of data sources 
makes it possible to monitor the earth at virtually any 
scale appropriate to the analysis. Progress is shown on the 
application of hyperspectral and thermal remote sensing 
methods for nutrient and water stress detection in crops, 
obtaining temperature estimates of individual tree crowns 
from airborne imagery. These methods have potential 
applications in water stress detection and irrigation 
scheduling in orchard canopies in the context of precision 
agriculture. 
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